119k views
17 votes
I just need help with question one, but if you want to you can answer question 2 as well. I’ll give 100 points!

I just need help with question one, but if you want to you can answer question 2 as-example-1

2 Answers

7 votes

Answer:

Translations

For
a > 0


f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}


f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}


f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}


f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}


y=a\:f(x) \implies f(x) \: \textsf{stretched parallel to the y-axis (vertically) by a factor of}\:a


y=f(ax) \implies f(x) \: \textsf{stretched parallel to the x-axis (horizontally) by a factor of} \: (1)/(a)


y=-f(x) \implies f(x) \: \textsf{reflected in the} \: x \textsf{-axis}


y=f(-x) \implies f(x) \: \textsf{reflected in the} \: y \textsf{-axis}

Question 1

Given:
f(x)=(2,-3)


f(x)+2 \implies (x, y+2)= (2,-3+2)=(2,-1)


f(x)-3 \implies (x,y-3)=(2,-3-3)=(2,-6)


f(x+5)\implies (x-5,y)=(2-5,-3)=(-3,-3)


-f(x) \implies (x,-y)=(2,-(-3))=(2,3)


f(-x) \implies (-x,y)=(-(2),-3)=(-2,-3)


f(2x) \implies \left((x)/(2),y\right)=\left((2)/(2),-3\right)=(1,-3)


2f(x) \implies (x,2y)=(2,2 \cdot -3)=(2,-6)


-f(x-4) \implies (x+4,-y)=(2+4,-(-3))=(6,3)


\begin{array} c \cline{1-8} & & & & & & &\\f(x)+2 & f(x)-3 & f(x+5) & -f(x) & f(-x) & f(2x) & 2f(x) & -f(x-4)\\& & & & & & &\\\cline{1-8} & & & & & & &\\(2,-1) & (2,-6) & (-3,-3) & (2,3) & (-2,-3) & (1,-3) & (2,-6) & (6,3)\\& & & & & & &\\\cline{1-8} \end{array}

Question 2

Parent function:
y=x^2

Given function:
f(x)=(x+8)^2-4


f(x+8) \implies f(x) \: \textsf{translated}\:8\:\textsf{units left}


f(x)-4 \implies f(x) \: \textsf{translated}\:4\:\textsf{units down}

Therefore, a translation 8 units to the left and 4 units down.

User Mike Housky
by
8.1k points
0 votes

Step-by-step explanation:

Given f(x) : (2, -3)

Translation's:

f(x) + 2 then graph translates up by 2 units up =
\boxed{\sf (2, -1)}

f(x) - 3 then graph translates down 3 units down =
\boxed{\sf (2, -6)}

f(x + 5) then graph translates left 5 units =
\boxed{\sf (-3, -3)}

-f(x) then graph reflects over x axis =
\sf \boxed{\sf (2, 3)}

f(-x) then graph reflects over y axis =
\sf \boxed{\sf (-2,-3)}

f(2x) then graph has horizontal compression = (2/2, -3) =
\boxed{\sf (1, -3)}

2f(x) then graph has vertical compression = (2, (-3)2) =
\boxed{\sf (2, -6)}

-f(x - 4) then graph reflects over x axis, moves 4 units to right =
\sf \boxed{\sf (6, 3)}

Solution 2

Parent function: y = x²

Graph function: f(x) = (x + 8)² - 4

After Identification:

D. The graph has a translation of 8 units left and 4 units down.

User Mfisch
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories