Answer:
6x - y < -3
Explanation:
When graphing inequalities:
< or > = dashed line
≤ or ≥ = solid line
< or ≤ = shade below the line
> or ≥ = shade above the line
Create an equation for the line
Choose 2 points on the line:
- let (x₁, y₁) = (-1, -3)
- let (x₂, y₂) = (0, 3)
Calculate the slope:
![\sf \textsf{slope}\:(m)=(y_2-y_1)/(x_2-x_1)=(3-(-3))/(0-(-1))=6](https://img.qammunity.org/2023/formulas/mathematics/high-school/rqe94ir3szrbhj9p0hovw1trhgmgmej4d7.png)
Determine the equation for the line using the point-slope formula:
![\implies\sf y-y_1=m(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ugc8fw2h1y07yw5wgppqwkx8jywbbblkkk.png)
![\implies \sf y-(-3)=6(x-(-1))](https://img.qammunity.org/2023/formulas/mathematics/high-school/5y5rnkm6bol0t775ico6bzkza24e0c9ix2.png)
![\implies \sf y+3=6(x+1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/73gns09fp2lqxuj5bil31eymy1fhs7662z.png)
![\implies \sf y=6x+3](https://img.qammunity.org/2023/formulas/mathematics/high-school/3df58lcrzmxhznvgmwwkkye3nmbibeye2h.png)
As the shading is above the line:
⇒ y > 6x + 3
Compare with answer options
Rearrange each answer option to make y the subject:
Option (a)
-6x + y < 3
⇒ y < 6x + 3
Option (b)
6x + y < 3
⇒ y < -6x + 3
Option (c)
6x - y < -3
⇒ -y < -6x - 3
⇒ y > 6x + 3
Therefore, as option C matches the calculated inequality, the answer is
6x - y < -3