159k views
4 votes
Find the volume of the cone

Find the volume of the cone-example-1
User DaShaun
by
5.0k points

2 Answers

5 votes

Answer:

12
\pi units^3

Explanation:

V=1/3Bh

=1/3 Area of the base times height

Area of base:
\pir^2=4
\pi

height=9

4
\pi times 9=36
\pi

1/3 of 36
\pi =12
\pi

User Pete Karl II
by
5.1k points
3 votes

Answer:

The volume of cone is
\boxed{\tt{37.68}} units³.

Step-by-step explanation:

As per given question we have provided :

  • ➝ Radius of cone = 2 units
  • ➝ Height of cone = 9 units

Here's the required formula to find the volume of cone :


{\longrightarrow{\pmb{\sf{V_((Cone)) = (1)/(3)\pi{r}^(2)h}}}}

  • ➝ V = Volume
  • ➝ π = 3.14
  • ➝ r = radius
  • ➝ h = height

Substituting all the given values in the formula to find the volume of cone :


{\implies{\sf{Volume_((Cone)) = (1)/(3)\pi{r}^(2)h}}}


{\implies{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(2)}^(2)9}}}


{\implies{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(2 * 2)}9}}}


{\implies{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(4)}9}}}


{\implies{\sf{Volume_((Cone)) = (1)/(3) * 3.14 * 4 * 9}}}


{\implies{\sf{Volume_((Cone)) = (1)/(3) * 3.14 * 36}}}


{\implies{\sf{Volume_((Cone)) = \frac{1}{\cancel{3}}* 3.14 * \cancel{36}}}}


{\implies{\sf{Volume_((Cone)) = 3.14 * 12}}}


{\implies{\sf{Volume_((Cone)) = 37.68}}}


\star{\underline{\boxed{\sf{\red{Volume_((Cone)) = 37.68 \: {units}^(3)}}}}}

Hence, the volume of cone is 37.68 units³.


\rule{300}{2.5}

User Lurline
by
5.0k points