159k views
4 votes
Find the volume of the cone

Find the volume of the cone-example-1
User DaShaun
by
9.2k points

2 Answers

5 votes

Answer:

12
\pi units^3

Explanation:

V=1/3Bh

=1/3 Area of the base times height

Area of base:
\pir^2=4
\pi

height=9

4
\pi times 9=36
\pi

1/3 of 36
\pi =12
\pi

User Pete Karl II
by
9.3k points
3 votes

Answer:

The volume of cone is
\boxed{\tt{37.68}} units³.

Step-by-step explanation:

As per given question we have provided :

  • ➝ Radius of cone = 2 units
  • ➝ Height of cone = 9 units

Here's the required formula to find the volume of cone :


{\longrightarrow{\pmb{\sf{V_((Cone)) = (1)/(3)\pi{r}^(2)h}}}}

  • ➝ V = Volume
  • ➝ π = 3.14
  • ➝ r = radius
  • ➝ h = height

Substituting all the given values in the formula to find the volume of cone :


{\implies{\sf{Volume_((Cone)) = (1)/(3)\pi{r}^(2)h}}}


{\implies{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(2)}^(2)9}}}


{\implies{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(2 * 2)}9}}}


{\implies{\sf{Volume_((Cone)) = (1)/(3) * 3.14{(4)}9}}}


{\implies{\sf{Volume_((Cone)) = (1)/(3) * 3.14 * 4 * 9}}}


{\implies{\sf{Volume_((Cone)) = (1)/(3) * 3.14 * 36}}}


{\implies{\sf{Volume_((Cone)) = \frac{1}{\cancel{3}}* 3.14 * \cancel{36}}}}


{\implies{\sf{Volume_((Cone)) = 3.14 * 12}}}


{\implies{\sf{Volume_((Cone)) = 37.68}}}


\star{\underline{\boxed{\sf{\red{Volume_((Cone)) = 37.68 \: {units}^(3)}}}}}

Hence, the volume of cone is 37.68 units³.


\rule{300}{2.5}

User Lurline
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories