141k views
1 vote
F(x)=x-1/x^2-x-6 which is the graph of

2 Answers

5 votes

Answer: The first one is the answer

Explanation:

User Adokiye Iruene
by
8.3k points
6 votes

Answer:

The graph is attached below.

Explanation:

As you have not added the graph, so I will be solving the function for a graph.

Given the function


f\left(x\right)=x-(1)/(x^2)-x-6


x-\mathrm{axis\:interception\:points\:of\:}-(1)/(x^2)-6:


\mathrm{x-intercept\:is\:a\:point\:on\:the\:graph\:where\:}y=0


-(1)/(x^2)-6=0


-1-6x^2=0


\mathrm{No\:Solution\:for}\:x\in \mathbb{R}


\mathrm{No\:x-axis\:interception\:points}


y-\mathrm{axis\:interception\:point\:of\:}-(1)/(x^2)-6:


y\mathrm{-intercept\:is\:the\:point\:on\:the\:graph\:where\:}x=0

As we know that the domain of a function is the set of input or argument values for which the function is real and defined.


\mathrm{Domain\:of\:}\:-(1)/(x^2)-6\::\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:x<0\quad \mathrm{or}\quad \:x>0\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:0\right)\cup \left(0,\:\infty \:\right)\end{bmatrix}


\mathrm{Since}\:x=0\:\mathrm{is\:not\:in\:domain}


\mathrm{No\:y-axis\:interception\:point}


\mathrm{Asymptotes\:of}\:-(1)/(x^2)-6:\quad \mathrm{Vertical}:\:x=0,\:\mathrm{Horizontal}:\:y=-6


\mathrm{Range\:of\:}-(1)/(x^2)-6:\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:f\left(x\right)<-6\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:-6\right)\end{bmatrix}

The graph is attached below.

F(x)=x-1/x^2-x-6 which is the graph of-example-1
User Avatarhzh
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories