141k views
1 vote
F(x)=x-1/x^2-x-6 which is the graph of

2 Answers

5 votes

Answer: The first one is the answer

Explanation:

User Adokiye Iruene
by
4.6k points
6 votes

Answer:

The graph is attached below.

Explanation:

As you have not added the graph, so I will be solving the function for a graph.

Given the function


f\left(x\right)=x-(1)/(x^2)-x-6


x-\mathrm{axis\:interception\:points\:of\:}-(1)/(x^2)-6:


\mathrm{x-intercept\:is\:a\:point\:on\:the\:graph\:where\:}y=0


-(1)/(x^2)-6=0


-1-6x^2=0


\mathrm{No\:Solution\:for}\:x\in \mathbb{R}


\mathrm{No\:x-axis\:interception\:points}


y-\mathrm{axis\:interception\:point\:of\:}-(1)/(x^2)-6:


y\mathrm{-intercept\:is\:the\:point\:on\:the\:graph\:where\:}x=0

As we know that the domain of a function is the set of input or argument values for which the function is real and defined.


\mathrm{Domain\:of\:}\:-(1)/(x^2)-6\::\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:x<0\quad \mathrm{or}\quad \:x>0\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:0\right)\cup \left(0,\:\infty \:\right)\end{bmatrix}


\mathrm{Since}\:x=0\:\mathrm{is\:not\:in\:domain}


\mathrm{No\:y-axis\:interception\:point}


\mathrm{Asymptotes\:of}\:-(1)/(x^2)-6:\quad \mathrm{Vertical}:\:x=0,\:\mathrm{Horizontal}:\:y=-6


\mathrm{Range\:of\:}-(1)/(x^2)-6:\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:f\left(x\right)<-6\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:-6\right)\end{bmatrix}

The graph is attached below.

F(x)=x-1/x^2-x-6 which is the graph of-example-1
User Avatarhzh
by
4.6k points