171k views
23 votes
Help please I need help with this

Help please I need help with this-example-1
User Leyvi
by
7.6k points

2 Answers

5 votes

We know,


{\qquad { \longrightarrow \pmb {\sf Volume_((Sphere)) = (4)/(3) \pi {r}^(3) }}}

Here,

  • Radius of the sphere is
    \sf(1)/(2) .

  • We will take the value of π as
    \sf(22)/(7) .

Substituting the values in the formula :


{ \longrightarrow {\qquad {\sf Volume_((Sphere)) = (4)/(3) * (22)/(7) * {\bigg((1)/(2) \bigg)}^(3) }}}


{ \longrightarrow {\qquad {\sf Volume_((Sphere)) = (4)/(3) * (22)/(7) * (1)/(8) }}}


{ \longrightarrow {\qquad {\sf Volume_((Sphere)) = ( \cancel4)/(3) * (22)/(7) * (1)/( \cancel8) }}}


{ \longrightarrow {\qquad {\sf Volume_((Sphere)) = ( 1)/(3) * (22)/(7) * (1)/( 2) }}}


{ \longrightarrow {\qquad {\sf Volume_((Sphere)) = (22)/(3 * 7 * 2) }}}


{ \longrightarrow {\qquad {\sf Volume_((Sphere)) = (22)/(42) }}}


{ \longrightarrow {\qquad {\bf Volume_((Sphere)) = (11)/(21) }}}

Therefore,

  • Radius of the sphere is
    \bf (11)/(21) units³.
User Cosmosa
by
7.5k points
9 votes

Answer:

π/6 ≈ 11/21 cubic units

Explanation:

Use the given values in the formula for the volume of a sphere:

V = 4/3πr³

V = (4/3)(22/7)(1/2)³ = 4·22/(3·7·8) = 11/21 . . . . cubic units

User Justin Hammenga
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories