171k views
23 votes
Help please I need help with this

Help please I need help with this-example-1
User Leyvi
by
3.4k points

2 Answers

5 votes

We know,


{\qquad { \longrightarrow \pmb {\sf Volume_((Sphere)) = (4)/(3) \pi {r}^(3) }}}

Here,

  • Radius of the sphere is
    \sf(1)/(2) .

  • We will take the value of π as
    \sf(22)/(7) .

Substituting the values in the formula :


{ \longrightarrow {\qquad {\sf Volume_((Sphere)) = (4)/(3) * (22)/(7) * {\bigg((1)/(2) \bigg)}^(3) }}}


{ \longrightarrow {\qquad {\sf Volume_((Sphere)) = (4)/(3) * (22)/(7) * (1)/(8) }}}


{ \longrightarrow {\qquad {\sf Volume_((Sphere)) = ( \cancel4)/(3) * (22)/(7) * (1)/( \cancel8) }}}


{ \longrightarrow {\qquad {\sf Volume_((Sphere)) = ( 1)/(3) * (22)/(7) * (1)/( 2) }}}


{ \longrightarrow {\qquad {\sf Volume_((Sphere)) = (22)/(3 * 7 * 2) }}}


{ \longrightarrow {\qquad {\sf Volume_((Sphere)) = (22)/(42) }}}


{ \longrightarrow {\qquad {\bf Volume_((Sphere)) = (11)/(21) }}}

Therefore,

  • Radius of the sphere is
    \bf (11)/(21) units³.
User Cosmosa
by
3.3k points
9 votes

Answer:

π/6 ≈ 11/21 cubic units

Explanation:

Use the given values in the formula for the volume of a sphere:

V = 4/3πr³

V = (4/3)(22/7)(1/2)³ = 4·22/(3·7·8) = 11/21 . . . . cubic units

User Justin Hammenga
by
3.1k points