58.3k views
2 votes
Find the product. (Do not use spaces in your answer.)

d j · d k

Find the product. (Do not use spaces in your answer.) d j · d k-example-1
User WJM
by
7.9k points

2 Answers

3 votes

Answer:


\huge\boxed{d^j\cdot d^k=d^(j+k)}

Explanation:

Use the theorem:


a^n\cdot a^m=a^(n+m)

Why? Look at this example:


2^3\cdot2^4=\underbrace{2\cdot2\cdot2}_(3)\cdot\underbrace{2\cdot2\cdot2\cdot2}_4=\underbrace{2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2}_(7)=2^7

Therefore


d^j\cdot d^k=d^(j+k)

User LearningCpp
by
7.9k points
4 votes

Answer:


\displaystyle d^(j + k)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)

Explanation:

Step 1: Define

Identify


\displaystyle d^j \cdot d^k

Step 2: Find

  1. Multiply [Exponential Rule - Multiplying]:
    \displaystyle d^j \cdot d^k = d^(j + k)
User Alessandro Annini
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories