58.3k views
2 votes
Find the product. (Do not use spaces in your answer.)

d j · d k

Find the product. (Do not use spaces in your answer.) d j · d k-example-1
User WJM
by
3.8k points

2 Answers

3 votes

Answer:


\huge\boxed{d^j\cdot d^k=d^(j+k)}

Explanation:

Use the theorem:


a^n\cdot a^m=a^(n+m)

Why? Look at this example:


2^3\cdot2^4=\underbrace{2\cdot2\cdot2}_(3)\cdot\underbrace{2\cdot2\cdot2\cdot2}_4=\underbrace{2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2}_(7)=2^7

Therefore


d^j\cdot d^k=d^(j+k)

User LearningCpp
by
2.9k points
4 votes

Answer:


\displaystyle d^(j + k)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Exponential Rule [Multiplying]:
    \displaystyle b^m \cdot b^n = b^(m + n)

Explanation:

Step 1: Define

Identify


\displaystyle d^j \cdot d^k

Step 2: Find

  1. Multiply [Exponential Rule - Multiplying]:
    \displaystyle d^j \cdot d^k = d^(j + k)
User Alessandro Annini
by
3.2k points