19.8k views
0 votes
What are the zeros of the quadratic function f(x) = 6x2 + 12x-7?

2 Answers

5 votes

Answer:


f(x) = 6x ^(2) + 12x - 7 \\ x = ( - 6 + √(78) )/(6) \: , - ( - 6 - √(78) )/(6)

User Michal T
by
4.2k points
4 votes

Given:

The quadratic function is:


f(x)=6x^2+12x-7

To find:

The zeros of the quadratic function.

Solution:

Quadratic formula: If a quadratic equation is
ax^2+bx+c=0, then zeros of the quadratic equation are:


x=(-b\pm √(b^2-4ac))/(2a)

We have,


f(x)=6x^2+12x-7

For zeros,
f(x)=0.


6x^2+12x-7=0

Here,
a=6,b=12,c=-7. Using quadratic formula, we get


x=(-12\pm √((12)^2-4(6)(-7)))/(2(6))


x=(-12\pm √(144+168))/(12)


x=(-12\pm √(312))/(12)


x=(-12\pm 17.6635)/(12)

Now,


x=(-12+17.6635)/(12) and
x=(-12-17.6635)/(12)


x=0.47195833... and
x=-2.47195833...


x\approx 0.472 and
x\approx -2.472

Therefore, the zeros of the given quadratic function are 0.472 and -2.472.

User Astro
by
4.2k points