75.7k views
5 votes
Help me for this question ​

Help me for this question ​-example-1
User ManiAm
by
7.4k points

2 Answers

5 votes

Answer:

Here,

L.H.S = cot^2x/1+cot^2x

= cos^2x/sin^2x / 1+(cos^2x/sin^2x)

= cos^2x/sin^2x / (sin^2x+cos^2x)/sin^2x

= cos^2x/1

=cos^2x

R.H.S proved

User Tom Frost
by
8.7k points
5 votes

Answer:

See below.

Explanation:


\boxed{\begin{minipage}{4 cm}\underline{Trigonometric Identities}\\\\$\cot \theta=(\cos \theta)/(\sin \theta)$\\\\\\$\sin^2 \theta +\cos^2 \theta = 1\\\end{minipage}}

Given expression:


(\cot^2x)/(1+\cot^2x)

Rewrite cot²x using the trigonometric identity:


\implies ((\cos^2x)/(\sin^2x))/(1+(\cos^2x)/(\sin^2x))

Rewrite the denominator so that is one fraction:


\implies ((\cos^2x)/(\sin^2x))/((\sin^2x)/(\sin^2x)+(\cos^2x)/(\sin^2x))


\implies((\cos^2x)/(\sin^2x))/((\sin^2x+\cos^2x)/(\sin^2x))


\textsf{Apply the fraction rule}: \quad ((a)/(c))/((b)/(c))=(a)/(b)


\implies (\cos^2x)/(\sin^2x+\cos^2x)

Use the trigonometric identity sin²x + cos²x = 1 :


\implies (\cos^2x)/(1)

Simplify:


\implies \cos^2x\end{aligned}

-------------------------------------------------------------------------------------

As one calculation:


\begin{aligned}(\cot^2x)/(1+\cot^2x)&=((\cos^2x)/(\sin^2x))/(1+(\cos^2x)/(\sin^2x))\\\\&=((\cos^2x)/(\sin^2x))/((\sin^2x)/(\sin^2x)+(\cos^2x)/(\sin^2x))\\\\&=((\cos^2x)/(\sin^2x))/((\sin^2x+\cos^2x)/(\sin^2x))\\\\&=(\cos^2x)/(\sin^2x+\cos^2x)\\\\&=(\cos^2x)/(1)\\\\&=\cos^2x\end{aligned}

User Badre
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories