75.7k views
5 votes
Help me for this question ​

Help me for this question ​-example-1
User ManiAm
by
3.1k points

2 Answers

5 votes

Answer:

Here,

L.H.S = cot^2x/1+cot^2x

= cos^2x/sin^2x / 1+(cos^2x/sin^2x)

= cos^2x/sin^2x / (sin^2x+cos^2x)/sin^2x

= cos^2x/1

=cos^2x

R.H.S proved

User Tom Frost
by
4.1k points
5 votes

Answer:

See below.

Explanation:


\boxed{\begin{minipage}{4 cm}\underline{Trigonometric Identities}\\\\$\cot \theta=(\cos \theta)/(\sin \theta)$\\\\\\$\sin^2 \theta +\cos^2 \theta = 1\\\end{minipage}}

Given expression:


(\cot^2x)/(1+\cot^2x)

Rewrite cot²x using the trigonometric identity:


\implies ((\cos^2x)/(\sin^2x))/(1+(\cos^2x)/(\sin^2x))

Rewrite the denominator so that is one fraction:


\implies ((\cos^2x)/(\sin^2x))/((\sin^2x)/(\sin^2x)+(\cos^2x)/(\sin^2x))


\implies((\cos^2x)/(\sin^2x))/((\sin^2x+\cos^2x)/(\sin^2x))


\textsf{Apply the fraction rule}: \quad ((a)/(c))/((b)/(c))=(a)/(b)


\implies (\cos^2x)/(\sin^2x+\cos^2x)

Use the trigonometric identity sin²x + cos²x = 1 :


\implies (\cos^2x)/(1)

Simplify:


\implies \cos^2x\end{aligned}

-------------------------------------------------------------------------------------

As one calculation:


\begin{aligned}(\cot^2x)/(1+\cot^2x)&=((\cos^2x)/(\sin^2x))/(1+(\cos^2x)/(\sin^2x))\\\\&=((\cos^2x)/(\sin^2x))/((\sin^2x)/(\sin^2x)+(\cos^2x)/(\sin^2x))\\\\&=((\cos^2x)/(\sin^2x))/((\sin^2x+\cos^2x)/(\sin^2x))\\\\&=(\cos^2x)/(\sin^2x+\cos^2x)\\\\&=(\cos^2x)/(1)\\\\&=\cos^2x\end{aligned}

User Badre
by
3.8k points