Answer:
![f(x)=13(3)^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/c4u8ho5gyfeil6j3e2alb6r8p9lwoaasru.png)
Explanation:
![\boxed{\begin{minipage}{9 cm}\underline{General form of an Exponential Function}\\\\$y=ab^x$\\\\where:\\\phantom{ww}$\bullet$ $a$ is the initial value ($y$-intercept). \\ \phantom{ww}$\bullet$ $b$ is the base (growth/decay factor) in decimal form.\\\end{minipage}}](https://img.qammunity.org/2023/formulas/mathematics/high-school/e0lus9p7p9wsav18fvpzm65rtz4rrvakvu.png)
The y-intercept of a function is the y-value when x = 0.
From inspection of the table, the y = 13 when x = 0, so a = 13:
![\implies f(x)=13(b)^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/ka917dxw8inff2ujcvyuxbty5tsaah6ip0.png)
Substitute the ordered pair (1, 39) into the equation and solve for b:
![\begin{aligned}f(1)=13(b)^1&=39\\13b&=39\\b&=(39)/(13)\\b&=3\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/p2ag99pujnauj30nrajh4yuiat6k8b6wnb.png)
Therefore, the equation for the given table is:
![f(x)=13(3)^x](https://img.qammunity.org/2023/formulas/mathematics/high-school/c4u8ho5gyfeil6j3e2alb6r8p9lwoaasru.png)