159k views
3 votes
Pllllllllllllllllllllleasee one guys i neeed ur help one

Pllllllllllllllllllllleasee one guys i neeed ur help one-example-1

2 Answers

5 votes


{ \qquad\qquad\huge\underline{{\sf Answer}}}

Let's solve ~

Calculate discriminant :


\qquad \sf  \dashrightarrow \: 3 {x}^(2) + 6x - 1

  • a = 3
  • b = 6
  • c = 1


\qquad \sf  \dashrightarrow \: discriminant = {b}^(2) - 4ac


\qquad \sf  \dashrightarrow \: d = (6) {}^(2) - (4 * 3 * 1)


\qquad \sf  \dashrightarrow \: d = 36 - 12


\qquad \sf  \dashrightarrow \: d = 24


\qquad \sf  \dashrightarrow \: \sqrt {d} = 2 √(6)

Now, let's calculate it's roots ( x - intercepts )


\qquad \sf  \dashrightarrow \: x = \cfrac{ - b \pm √(d) }{2a}


\qquad \sf  \dashrightarrow \: x = \cfrac{ - 6\pm 2 √(6) }{2 * 3}


\qquad \sf  \dashrightarrow \: x = \cfrac{ - 6\pm 2 √(6) }{6}

So, the intercepts are :


\qquad \sf  \dashrightarrow \: x = \cfrac{ - 6 - 2 √(6) }{6}

and


\qquad \sf  \dashrightarrow \: x = \cfrac{ - 6 + 2 √(6) }{6}

User Flyboi
by
7.1k points
0 votes

Answer:


\left( ( -3 + 2√(3))/( 3), \ 0\right), \ \left(( -3 - 2√(3))/( 3), \ 0\right)

Step-by-step explanation:

Given expression:

f(x) = 3x² + 6x - 1

  • To find x intercepts, set f(x) = 0

Use quadratic formula:


\sf x = ( -b \pm √(b^2 - 4ac))/(2a) \ where \ ax^2 + bx + c = 0

Here after finding coefficients:

  • a = 3, b = 6, c = -1

Applying formula:


x = ( -6 \pm √(6^2 - 4(3)(-1)))/(2(3))


x = ( -6 \pm √(48))/(6)


x = ( -6 \pm 4√(3))/(6)


x = ( -6 \pm 4√(3))/(2 \cdot 3)


x = ( -3 \pm 2√(3))/( 3)


x = ( -3 + 2√(3))/( 3), \ ( -3 - 2√(3))/( 3)

User Skoczen
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories