159k views
3 votes
Pllllllllllllllllllllleasee one guys i neeed ur help one

Pllllllllllllllllllllleasee one guys i neeed ur help one-example-1

2 Answers

5 votes


{ \qquad\qquad\huge\underline{{\sf Answer}}}

Let's solve ~

Calculate discriminant :


\qquad \sf  \dashrightarrow \: 3 {x}^(2) + 6x - 1

  • a = 3
  • b = 6
  • c = 1


\qquad \sf  \dashrightarrow \: discriminant = {b}^(2) - 4ac


\qquad \sf  \dashrightarrow \: d = (6) {}^(2) - (4 * 3 * 1)


\qquad \sf  \dashrightarrow \: d = 36 - 12


\qquad \sf  \dashrightarrow \: d = 24


\qquad \sf  \dashrightarrow \: \sqrt {d} = 2 √(6)

Now, let's calculate it's roots ( x - intercepts )


\qquad \sf  \dashrightarrow \: x = \cfrac{ - b \pm √(d) }{2a}


\qquad \sf  \dashrightarrow \: x = \cfrac{ - 6\pm 2 √(6) }{2 * 3}


\qquad \sf  \dashrightarrow \: x = \cfrac{ - 6\pm 2 √(6) }{6}

So, the intercepts are :


\qquad \sf  \dashrightarrow \: x = \cfrac{ - 6 - 2 √(6) }{6}

and


\qquad \sf  \dashrightarrow \: x = \cfrac{ - 6 + 2 √(6) }{6}

User Flyboi
by
3.9k points
0 votes

Answer:


\left( ( -3 + 2√(3))/( 3), \ 0\right), \ \left(( -3 - 2√(3))/( 3), \ 0\right)

Step-by-step explanation:

Given expression:

f(x) = 3x² + 6x - 1

  • To find x intercepts, set f(x) = 0

Use quadratic formula:


\sf x = ( -b \pm √(b^2 - 4ac))/(2a) \ where \ ax^2 + bx + c = 0

Here after finding coefficients:

  • a = 3, b = 6, c = -1

Applying formula:


x = ( -6 \pm √(6^2 - 4(3)(-1)))/(2(3))


x = ( -6 \pm √(48))/(6)


x = ( -6 \pm 4√(3))/(6)


x = ( -6 \pm 4√(3))/(2 \cdot 3)


x = ( -3 \pm 2√(3))/( 3)


x = ( -3 + 2√(3))/( 3), \ ( -3 - 2√(3))/( 3)

User Skoczen
by
4.3k points