109k views
9 votes
Suppose h(x) = ax^3 + 11x^2. Determine a if h has an inflection point at x = 4. Show all your work.

User Dvorah
by
8.3k points

2 Answers

9 votes

Answer:

This isn't the answer, but do you have the rest of the questions?

Explanation:

Thank you in advance.

User DL Studio
by
8.7k points
5 votes

Answer:


a=-11/12

Explanation:

We are given the function:


h(x)=ax^3 + 11 x^ 2

And we want to determine a such that h(x) has an inflection point at x = 4.

Possible inflection points are whenever h''(x) equals 0. So, we will first differentiate h(x) twice. This yields:


h'(x)=3ax^2+22x

So:


h^(\prime\prime) (x)=6ax+22

Inflection points occur when h''(x) = 0. So:


0=6ax+22

Since we have an inflection at x = 4:


0=24a+22

And solving for a yields:


a=-22/24=-11/12

User AllocSystems
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories