37.2k views
5 votes
If A^2=A, which matrix is matrix A

If A^2=A, which matrix is matrix A-example-1
User Mohit Goel
by
8.1k points

2 Answers

2 votes

Answer:

Options 1 and 3.

Explanation:

By definition the product between two matrices is:

Let's suppose both matrices are 2x2,


A=\left[\begin{array}{cc}a_(11)&a_(12)\\a_(21)&a_(22)\end{array}\right]


B=\left[\begin{array}{cc}b_(11)&b_(12)\\b_(21)&b_(22)\end{array}\right]

The product between A and B is:


AB=\left[\begin{array}{cc}a_(11)b_(11)+a_(12)b_(21)&a_(11)b_(12)+a_(12)b_(22)\\a_(21)b_(11)+a_(22)b_(21)&a_(21)b_(12)+a_(22)b_(22)\end{array}\right]

IMPORTANT: It's not the same AB then BA the results of both products are differents.

Now we are going to analyze every option:


A^2=A.A

Option 1:


A=\left[\begin{array}{cc}5&5\\-4&-4\end{array}\right]


A.A=\left[\begin{array}{cc}5&5\\-4&-4\end{array}\right] .\left[\begin{array}{cc}5&5\\-4&-4\end{array}\right] =\\\\=\left[\begin{array}{cc}5.5+5(-4)&5.5+5(-4)\\(-4).5+(-4).(-4)&(-4).5+(-4)(-4)\end{array}\right] \\\\=\left[\begin{array}{cc}25-20&25-20\\-20+16&-20+16\end{array}\right] \\\\=\left[\begin{array}{cc}5&5\\-4&-4\end{array}\right]=A

We can see that A.A=A then this is the correct option.

Option 2:


A=\left[\begin{array}{cc}6&5\\5&6\end{array}\right]\\\\A.A=\left[\begin{array}{cc}6&5\\5&6\end{array}\right].\left[\begin{array}{cc}6&5\\5&6\end{array}\right]\\\\=\left[\begin{array}{cc}6.6+5.5&6.5+5.6\\5.6+6.5&5.5+6.6\end{array}\right]\\\\=\left[\begin{array}{cc}36+25&30+30\\30+30&25+36\end{array}\right]\\\\=\left[\begin{array}{cc}61&60\\60&61\end{array}\right]\\eq A


A.A\\eq A Then this option is incorrect.

Option 3:


A=\left[\begin{array}{cc}0,5&-0,5\\-0,5&0,5\end{array}\right] \\\\A.A=\left[\begin{array}{cc}0,5&-0,5\\-0,5&0,5\end{array}\right].\left[\begin{array}{cc}0,5&-0,5\\-0,5&0,5\end{array}\right]\\\\=\left[\begin{array}{cc}0,5.0,5+(-0,5).(-0,5)&0,5.(-0,5)+(-0,5).(0,5)\\(-0,5).0,5+0,5.(-0,5)&(-0,5).(-0,5)+0,5.0,5\end{array}\right]\\\\=\left[\begin{array}{cc}0,25+0,25&-0,25-0,25\\-0,25-0,25&0,25+0,25\end{array}\right]\\\\=\left[\begin{array}{cc}0,5&-0,5\\-0,5&0,5\end{array}\right]= A

We can see that this option is also correct.

Option 4:


A=\left[\begin{array}{cc}0,5&0,5\\-0,5&0,5\end{array}\right] \\\\A.A=\left[\begin{array}{cc}0,5&0,5\\-0,5&0,5\end{array}\right].\left[\begin{array}{cc}0,5&0,5\\-0,5&0,5\end{array}\right]\\\\=\left[\begin{array}{cc}0,5.0,5+0,5.(-0,5)&0,5.0,5+0,5.0,5\\(-0,5).0,5+0,5.(-0,5)&(-0,5).0,5+0,5.0,5\end{array}\right]\\\\=\left[\begin{array}{cc}0,25-0,25&0,25+0,25\\-0,25-0,25&-0,25+0,25\end{array}\right]\\\\=\left[\begin{array}{cc}0&0,5\\-0,5&0\end{array}\right]\\eq A

Then this option is incorrect.

Option 5:


A=\left[\begin{array}{cc}-6&-6\\5&5\end{array}\right]\\\\A.A=\left[\begin{array}{cc}-6&-6\\5&5\end{array}\right].\left[\begin{array}{cc}-6&-6\\5&5\end{array}\right]\\\\=\left[\begin{array}{cc}(-6).(-6)+(-6).5&(-6).(-6)+(-6).5\\5.(-6)+5.5&5.(-6)+5.5\end{array}\right]\\\\=\left[\begin{array}{cc}36-30&36-30\\-30+25&-30+25\end{array}\right]\\\\=\left[\begin{array}{cc}6&6\\-5&-5\end{array}\right]\\eq A

Then this option is incorrect.

User Vincent Durmont
by
7.8k points
0 votes

Consider all options:

A.


\left[\begin{array}{cc}5&5\\-4&-4\end{array}\right] \cdot \left[\begin{array}{cc}5&5\\-4&-4\end{array}\right] =\left[\begin{array}{cc}5\cdot 5+5\cdot (-4)&5\cdot 5+5\cdot (-4)\\-4\cdot 5+(-4)\cdot (-4)&-4\cdot 5+(-4)\cdot (-4)\end{array}\right]=


=\left[\begin{array}{cc}5&5\\-4&-4\end{array}\right].

This option is true.

B.


\left[\begin{array}{cc}6&5\\5&6\end{array}\right] \cdot \left[\begin{array}{cc}6&5\\5&6\end{array}\right] =\left[\begin{array}{cc}6\cdot 6+5\cdot 5&6\cdot 5+5\cdot 6\\5\cdot 6+6\cdot 5&5\cdot 5+6\cdot 6\end{array}\right]=


=\left[\begin{array}{cc}61&60\\60&61\end{array}\right].

This option is false.

C.


\left[\begin{array}{cc}0.5&-0.5\\-0.5&0.5\end{array}\right] \cdot \left[\begin{array}{cc}0.5&-0.5\\-0.5&0.5\end{array}\right] =\left[\begin{array}{cc}0.5\cdot 0.5+(-0.5)\cdot (-0.5)&0.5\cdot (-0.5)+(-0.5)\cdot 0.5\\-0.5\cdot 0.5+0.5\cdot (-0.5)&-0.5\cdot (-0.5)+0.5\cdot 0.5\end{array}\right]=


=\left[\begin{array}{cc}0.5&-0.5\\-0.5&0.5\end{array}\right].

This option is true.

D.


\left[\begin{array}{cc}0.5&0.5\\-0.5&0.5\end{array}\right] \cdot \left[\begin{array}{cc}0.5&0.5\\-0.5&0.5\end{array}\right] =\left[\begin{array}{cc}0.5\cdot 0.5+0.5\cdot (-0.5)&0.5\cdot 0.5+0.5\cdot 0.5\\-0.5\cdot 0.5+0.5\cdot (-0.5)&-0.5\cdot 0.5+0.5\cdot 0.5\end{array}\right]=


=\left[\begin{array}{cc}0&0.5\\-0.5&0\end{array}\right].

This option is false.

E.


\left[\begin{array}{cc}-6&-6\\5&5\end{array}\right] \cdot \left[\begin{array}{cc}-6&-6\\5&5\end{array}\right] =\left[\begin{array}{cc}-6\cdot (-6)+(-6)\cdot 5&-6\cdot (-6)+(-6)\cdot 5\\5\cdot (-6)+5\cdot 5&5\cdot (-6)+5\cdot 5\end{array}\right]=


=\left[\begin{array}{cc}6&6\\-5&-5\end{array}\right].

This option is false.

Answer: correct options are A and C.

User Christostsang
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories