60.1k views
3 votes
Which of the following is a true polynomial identity?

a. (x^2+1)(x^2-a)= x^4-a

b. (x^2+1)(x^2+a)= x^2(x^2+a+1)

c. (x^2+1)(x^2+a)-a = x^2(x^2+a+1)

d. (x^2+1)(x^2+a)= x^2+ax^2+a

User Iacopo
by
8.2k points

2 Answers

6 votes

Answer:

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC (x^2+1)(x^2+a)-a = x^2(x^2+a+1)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Explanation:

I checked the other guys work an it is CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

User UkBaz
by
7.7k points
3 votes

Answer:

c. (x^2+1)(x^2+a)-a = x^2(x^2+a+1)

Explanation:

You can use FOIL or the distributive property to expand the product of binomials, Then collect terms and factor out the common factor.

(x^2+1)(x^2+a)-a

= x^2(x^2 +a) +1(x^2 +a) -a

= x^4 +ax^2 +x^2 +a -a

= x^4 +ax^2 +x^2

= x^2(x^2 +a +1) . . . . . matches choice C

User Adam Ashwal
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories