158k views
1 vote
Suppose △FMN≅△HQR . Which congruency statements are true? Select each correct answer. NF¯¯¯¯¯¯≅HQ¯¯¯¯¯¯ MN¯¯¯¯¯¯¯≅QR¯¯¯¯¯ ∠M≅∠Q ∠R≅∠F ∠N≅∠M QH¯¯¯¯¯¯≅MF¯¯¯¯¯¯

User PhilMacKay
by
5.4k points

2 Answers

1 vote
△FMN ≅ △HQR
so
MF ≅ QH
MN
QR
NF
RH
and
∠F ≅ ∠H
∠M ≅ ∠Q
∠N ≅ ∠R

Answer
MN ≅ QR
∠M ≅ ∠Q
QH ≅ MF
User Boez
by
5.4k points
3 votes

Answer:
\overline{MN}\cong\overline{QR}


\angle{M}\cong\angle{Q}


\overline{MF}\cong\overline{QH}

Explanation:

We know that if two triangles are congruent , then the corresponding angles and sides are congruent by CPCTC.

Given:
\triangle {FMN}\cong\triangle{HQR}

Therefore , the corresponding angles and sides of
\triangle {FMN}\text{ and }\triangle{HQR} are congruent.

∠F corresponds ∠H

∠M corresponds ∠Q

∠N corresponds ∠R

⇒ ∠F ≅ ∠H

∠M ≅ ∠Q

∠N ≅ ∠R


\overline{MF}\cong\overline{QH}\\\overline{MN}\cong\overline{QR}\\\overlien{FN}\cong\overline{HR}

So , from the given options, the true congruency statements are :-


\overline{MN}\cong\overline{QR}


\angle{M}\cong\angle{Q}


\overline{MF}\cong\overline{QH}

User Wpcarro
by
5.1k points