Answer:
![\overline{MN}\cong\overline{QR}](https://img.qammunity.org/2019/formulas/mathematics/high-school/ghxs0mmkc7qgxvtpf4v9v5rx2ughfaj5zq.png)
![\angle{M}\cong\angle{Q}](https://img.qammunity.org/2019/formulas/mathematics/high-school/u0uh5vs9fe18hadr2ghg0lv7lon4b8uz0b.png)
![\overline{MF}\cong\overline{QH}](https://img.qammunity.org/2019/formulas/mathematics/high-school/j37htpdmlx8p60e8y4l64kmb4m56cvi8hg.png)
Explanation:
We know that if two triangles are congruent , then the corresponding angles and sides are congruent by CPCTC.
Given:
![\triangle {FMN}\cong\triangle{HQR}](https://img.qammunity.org/2019/formulas/mathematics/high-school/wasn2l2gvkizv6eoqpbh7zsjehb1eg6bo7.png)
Therefore , the corresponding angles and sides of
are congruent.
∠F corresponds ∠H
∠M corresponds ∠Q
∠N corresponds ∠R
⇒ ∠F ≅ ∠H
∠M ≅ ∠Q
∠N ≅ ∠R
![\overline{MF}\cong\overline{QH}\\\overline{MN}\cong\overline{QR}\\\overlien{FN}\cong\overline{HR}](https://img.qammunity.org/2019/formulas/mathematics/high-school/xoc4rh74oew00kp90vd7nezvtc3dc1vfum.png)
So , from the given options, the true congruency statements are :-
![\overline{MN}\cong\overline{QR}](https://img.qammunity.org/2019/formulas/mathematics/high-school/ghxs0mmkc7qgxvtpf4v9v5rx2ughfaj5zq.png)
![\angle{M}\cong\angle{Q}](https://img.qammunity.org/2019/formulas/mathematics/high-school/u0uh5vs9fe18hadr2ghg0lv7lon4b8uz0b.png)
![\overline{MF}\cong\overline{QH}](https://img.qammunity.org/2019/formulas/mathematics/high-school/j37htpdmlx8p60e8y4l64kmb4m56cvi8hg.png)