Answer:
"Apparent weight during the "plan's turn" is 519.4 N
Step-by-step explanation:
The "plane’s altitude" is not so important, but the fact that it is constant tells us that the plane moves in a "horizontal plane" and its "normal acceleration" is
![\mathrm{a}_{\mathrm{n}}=(v^(2))/(R)](https://img.qammunity.org/2020/formulas/physics/college/7tf757u97rvycd84kzldl5zy68p0l0r7l1.png)
Given that,
v = 420 m/s
R = 11000 m
Substitute the values in the above equation,
![a_(n)=(420^(2))/(11000)](https://img.qammunity.org/2020/formulas/physics/college/xeplygg3x2kpjwqvl57fkf2kmhh81nbd2l.png)
![a_(n)=(176400)/(11000)](https://img.qammunity.org/2020/formulas/physics/college/pamr3xpf7mn18g6shsyael2vlgu93a67cu.png)
![a_(n)=16.03 \mathrm{m} / \mathrm{s}^(2)](https://img.qammunity.org/2020/formulas/physics/college/agv06pbxw5tihikl0yvaditazi6dtj4u9l.png)
It has a horizontal direction. Furthermore, constant speed implies zero tangential acceleration, hence vector a = vector a N. The "apparent weight" of the pilot adds his "true weight" "m" "vector" "g" and the "inertial force""-m" vector a due to plane’s acceleration, vector
![W_{\mathrm{app}}=m(\text { vector } g \text { -vector a })](https://img.qammunity.org/2020/formulas/physics/college/qoo13vy8y1wkz4dq9em3weffnhk8wtg7ui.png)
In magnitude,
![| \text { vector } g-\text { vector } a |=\sqrt{\left(g^(2)+a^(2)\right)}](https://img.qammunity.org/2020/formulas/physics/college/a3f5nnp6n7jkxqec9ti1g84oxs39qycqg6.png)
![| \text { vector } \mathrm{g}-\text { vector } \mathrm{a} |=\sqrt{\left(9.8^(2)+16.03^(2)\right)}](https://img.qammunity.org/2020/formulas/physics/college/8w84qb2rk9cud89m8qngu5hwckmio5668r.png)
![| \text { vector } \mathrm{g}-\text { vector } \mathrm{a} |=√((96.04+256.96))](https://img.qammunity.org/2020/formulas/physics/college/yif4frn8svfv4ufnr3rbsct7faa4yi1sp0.png)
![| \text { vector } \mathrm{g}-\text { vector } \mathrm{a} |=√(353)](https://img.qammunity.org/2020/formulas/physics/college/q04qwo9dttuiibv0fvfwze8jvqu07hcybt.png)
![| \text { vector } \mathrm{g}-\text { vector } \mathrm{a} |=18.78 \mathrm{m} / \mathrm{s}^(2)](https://img.qammunity.org/2020/formulas/physics/college/e0qmds2b26npcm1n1hpiud8ye25t4mfzp3.png)
Because vector “a” is horizontal while vector g is vertical. Consequently, the pilot’s apparent weight is vector
![\mathrm{W}_{\mathrm{app}}=(18.78 \mathrm{m} / \mathrm{s}^ 2)(53 \mathrm{kg})=995.77 \mathrm{N}](https://img.qammunity.org/2020/formulas/physics/college/x6oeq0qzzar3dp84atwn89nz60fix6fwt6.png)
Which is quite heavier than his/her true weigh of 519.4 N