Answer:
The length of line segment AC = 6.44 inches
Explanation:
Given as :
ABC is a right angle triangle, right angle at c
So , ∠ ACB = 90°
And ∠ ABC = 40°
So, ∠ BCA = 180° - ( ∠ ACB + ∠ ABC )
Or, ∠ BCA = 180° - ( 90° + 40° )
I.e ∠ BCA = 50°
The length of Hypotenuse = 10 inches
The length of AC = Perpendicular = b
The length of CB = Base = a
∵ This is a right angled Triangle , then
Hypotenuse² = Perpendicular² + Base²
Or, 10² = AC² + BC²
Or, 10² = b² + a² ...1
Now, From triangle ABC
Tan 50° =
![(\textrm BC)/(\textrm AC)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ym2lbvu92n668komzxe6zieo3j8m1ugb0u.png)
I.e 1.19 =
![(a)/(b)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3ieqiim7n24kz6w1yrgbi037zxpcc432h0.png)
So, a = 1.19 b
From eq 1
10² = b² + (1.19 b)²
Or, 100 = 2.41 b²
so, b² =
= 41.49
∴ b =
= 6.44 inches
And a = 1.19 × 6.44 = 7.66 inches
Hence The length of line segment AC = 6.44 inches Answer