9.5k views
0 votes
Find the solution of the given initial value problem:

(a) y' + 2y = te^{-2t}, y(1) = 0

(b) t^{3}y' + 4t^{2}y = e^{-t}, y(-1) = 0

User Soliz
by
8.0k points

2 Answers

5 votes

Answer:

a.
y(t)=(t^2e^(-2t))/(2)-(1)/(2)e^(-2t)

b.
y=-t^(-3)e^(-t)-t^(-4)e^(-t)

Explanation:

We are given that

a.
y'+2y=te^(-2t),y(1)=0

Compare with
y'+P(t)y=Q(t)

We have P(t)=2,Q(t)=
te^(-2t)

Integration factor=
\int e^(2dt)=e^(2t)


y\cdot I.F=\int Q(t)\cdot I.F dt+C

Substitute the values then, we get


y\cdot e^(2t)=\int te^(-2t)\cdot e^(2t) dt+C


y\cdot e^(2t)=\int tdt+C


ye^(2t)=(t^2)/(2)+C

Substitute the values x=1 and y=0

Then, we get
0\cdot e^2=(1)/(2)+C


C=-(1)/(2)

Substitute the value in the given function


ye^(2t)=(t^2)/(2)-(1)/(2)


y=(t^2)/(2)e^(-2t)-(1)/(2)e^(-2t)

Hence,
y(t)=(t^2e^(-2t))/(2)-(1)/(2)e^(-2t)

b.
t^3y'+4t^2y=e^(-t),y(-1)=0


y'+(4)/(t)y=(e^(-t))/(t^3)


P(t)=(4)/(t),Q(t)=(e^(-t))/(t^3)

I.F=
\int e^{(4)/(t)dt}=e^(4lnt)=e^(lnt^4)=t^4


y\cdot \frac{t^4}=\int e^(-t)(t^4)/(t^3) dt+C


y\cdot t^4=\int te^(-t)dt+C


yt^4=-te^(-t)+\int e^(-t) dt+C


u\cdot v dt=u\int vdt-\int ((du)/(dt)\cdot \int vdt)dt


yt^4=-te^(-t)-e^(-t)+C

Substitute the values x=-1,y=0 then, we get


0=-(-1)e-e+C


C+e-e=0

C=0

Substitute the value of C then we get


yt^4=-te^(-t)-e^(-t)


y=-t^(-3)e^(-t)-t^(-4)e^(-t)

User Nthall
by
8.3k points
4 votes

Answer:


(a)\ y(t) =\ 4.e^(2(1-t))\ +\ (t^2e^(-2t))/(4)


(b)\ y(t)=\ (1-t)e^(-t)\ -\ 2e

Explanation:

(a)
y'\ +\ 2y\ =\ te^(-2t),\ y(1)\ =\ 0


=>\ (D+2)y\ =\ te^(-2t)

To find the complementary function

D+2 = 0

=> D = -2

So, the complementary function can by given by


y_c(t)\ =\ C.e^(-2t)

Now, to find particular integral


(D+2)y_p(t)\ =\ te^(-2t)


=>y_p(t)\ =\ ( te^(-2t))/(D+2)


=\ ( te^(-2t))/(-2+2)

= not defined

So,


y_p(t)\ =\ ( t^2e^(-2t))/(D^2)


=\ (t^2e^(-2t))/((-2)^2)


=\ (t^2e^(-2t))/(4)

So, complete solution can be given by


y(t)\ =\ y_c(t)\ +\ y_p(t)


=> y(t) =\ C.e^(-2t)\ +\ (t^2e^(-2t))/(4)

As given in question


=>\ y(1)\ =\ C.e^(-2)\ +\ (1^2e^(-2))/(4)


=>\ 0\ =\ C.e^(-2)\ +\ (1^2e^(-2))/(4)


=>\ C\ =\ 4e^2

Hence, the complete solution can be give by


=>\ y(t) =\ 4e^2.e^(-2t)\ +\ (t^2e^(-2t))/(4)


=>\ y(t) =\ 4.e^(2(1-t))\ +\ (t^2e^(-2t))/(4)

(b)
t^(3)y'\ +\ 4t^(2)y\ =\ e^(-t),\ y(-1)\ =\ 0


=>\ y'\ +\ 4t^(-1)y\ =\ t^(-3)e^(-t)

Integrating factor can be given by


I.F\ =\ e^{\int (4t^(-1))dt}


=\ e^(log\ t^4)


=\ t^4

Now , the solution of the given differential equation can be given by


y(t)* t^4\ =\ \int t^(-3)e^(-t)t^4dt\ +\ C


=>\ y(t)\ =\ \int t.e^(-t)dt\ +\ C


=\ (1-t)e^(-t)\ +\ C

According to question


y(-1)\ =\ (1-(-1))e^1\ +\ C


=>\ 0\ =\ 2e\ +\ C


=>\ C\ =\ -2e

Now, the complete solution of the given differential equation cab be given by


y(t)\ =\ (1-t)e^(-t)\ -\ 2e

User Apurv Agarwal
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories