Answer : The De Broglie wavelength of an electron is
![1.0025* 10^(-15)m](https://img.qammunity.org/2020/formulas/engineering/college/i9qn41x8jq58mqfyoxcp86ivtd2c7tfvtd.png)
Explanation :
According to de-Broglie, the expression for wavelength is,
The formula used for kinetic energy is,
![K.E=(1)/(2)mv^2](https://img.qammunity.org/2020/formulas/chemistry/middle-school/9ntvmmzaskhxsi0uje2s1ynexazu6ronbz.png)
The kinetic energy in terms of momentum will be,
p = m v
![K.E=(1)/(2)mv^2=(p^2)/(2m)](https://img.qammunity.org/2020/formulas/engineering/college/a5y4hlf0yjxw5y9ro3v7s4ghh6mzu9eio6.png)
or,
![p=√(2mK.E)=mv](https://img.qammunity.org/2020/formulas/engineering/college/oth34qefda7s9jx93j5092ackntnehlgfm.png)
As we know that,
![K.E=q* V](https://img.qammunity.org/2020/formulas/engineering/college/g8x2vldjuo0xk7vxth0qguls9wn76c6hlu.png)
where,
'q' is charge of electron
and 'V' is potential difference.
So,
![p=√(2m* q* V)=mv](https://img.qammunity.org/2020/formulas/engineering/college/77v0becqxy4n1xrkwabx58y51j3udsnl09.png)
The de Broglie wavelength of the electron will be:
.........(1)
where,
h = Planck's constant =
![6.626* 10^(-34)Js=6.626* 10^(-34)kgm^2/s](https://img.qammunity.org/2020/formulas/engineering/college/fxj6rbz956gm5p9h2sdmsfw63fk7zjgwio.png)
m = mass of electron =
![9.1* 10^(-31)kg](https://img.qammunity.org/2020/formulas/physics/college/eyhh2objrpb8mr0j9a3dur5n7htf42bxwh.png)
q = charge of electron =
![1.6* 10^(-9)C](https://img.qammunity.org/2020/formulas/engineering/college/9e6x447smpyuqh8aaxbw9j12k64j023d0j.png)
V = potential difference = 150 V
Now put all the given values in equation 1, we get:
![\lambda=\frac{6.626* 10^(-34)kgm^2/s}{\sqrt{2* (9.1* 10^(-31)kg)* (1.6* 10^(-9)C)* (150V)}}](https://img.qammunity.org/2020/formulas/engineering/college/7egijzgxutd4bfobylm8avx7lfuud6vkh5.png)
conversion used :
![(1CV=1J=1kgm^2/s^2)](https://img.qammunity.org/2020/formulas/engineering/college/7xw951hl0f2vi9avp51nco6jfeobzxik7n.png)
![\lambda=1.0025* 10^(-15)m](https://img.qammunity.org/2020/formulas/engineering/college/4e8pw0vq37v5rlhxo3c6g4a30yeg5kx6yc.png)
Therefore, the De Broglie wavelength of an electron is
![1.0025* 10^(-15)m](https://img.qammunity.org/2020/formulas/engineering/college/i9qn41x8jq58mqfyoxcp86ivtd2c7tfvtd.png)