Answer:
Option D -1
Step-by-step explanation:
Given : Function
![f(x)=(|x-3|)/(x-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/gvkczour5jfq33qfheg76lr6uetdewg71v.png)
To find : What is the left-hand limit of function as approaches 3?
Solution :
Function
![f(x)=(|x-3|)/(x-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/gvkczour5jfq33qfheg76lr6uetdewg71v.png)
In left-hand limit,
![x\rightarrow 3^-](https://img.qammunity.org/2020/formulas/mathematics/high-school/oufux8ksyvv61vcwfq4b75j1fgbvzep33m.png)
![x<3\Rightarrow (x-3)<0\Rightarrow |x-3|=-(x-3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/9mjx2s8rsu7il4m0ahl5djfn3c9s0w1t8l.png)
So,
![\lim_(x\rightarrow3^-)f(x)= \lim_(x\rightarrow3^-) (-1)=-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/g5q9a0kh4bc728y74efkj7utsn0d1buy3e.png)
Therefore, The left-hand limit of function as approaches 3 is -1.
So, Option D is correct.