Answer:
The function is neither even nor odd.
Explanation:
Given : Function
![f(x)=3(x-1)^4](https://img.qammunity.org/2020/formulas/mathematics/high-school/g7ntpg68rh832wa03ynzgi746fvgvodn7z.png)
To find : Determine whether the function is even or odd ?
Solution :
Rules to determine the function is even or odd :
If f(x)=f(-x) then the function is even.
If f(x)=-f(x) then the function is odd.
Now, Test for even function
![f(x)=3(x-1)^4](https://img.qammunity.org/2020/formulas/mathematics/high-school/g7ntpg68rh832wa03ynzgi746fvgvodn7z.png)
![f(-x)=3(-x-1)^4](https://img.qammunity.org/2020/formulas/mathematics/high-school/ejbc9vvdkre1f1h8cqkjcu3cjwx9fd9jdx.png)
![f(-x)=3(-(x+1)^4](https://img.qammunity.org/2020/formulas/mathematics/high-school/cth5qovj5munpd3qz6wdsujz4vajeaoczg.png)
![f(-x)=3(x+1)^4](https://img.qammunity.org/2020/formulas/mathematics/high-school/nu2bg7o3uwksouxaxjv6x3a5ev6t3bihgc.png)
so function is not even.
Test for odd function,
![f(x)=3(x-1)^4](https://img.qammunity.org/2020/formulas/mathematics/high-school/g7ntpg68rh832wa03ynzgi746fvgvodn7z.png)
![-f(x)=-3(x-1)^4](https://img.qammunity.org/2020/formulas/mathematics/high-school/cv83q63d9p2jzmwsxirc8mpljx8fb69xq3.png)
so function is not odd.
So, The function is neither even nor odd.