223k views
0 votes
Use a calculator to estimate the limit
Picture provided below

Use a calculator to estimate the limit Picture provided below-example-1

2 Answers

4 votes

Answer:

b is correct.


L=\infty

Explanation:

We are given a limit
L=\lim_(x\rightarrow \infty)(√(x^2+10x+5)+x)

Using calculator to find the value of limit.

First we check the limit exist or not.

We have to check left and right hand limit.

For Left hand limit, LHL


L=\lim_(x\rightarrow \infty^-)(√(x^2+10x+5)+x)=\infty

For Right hand limit, RHL


L=\lim_(x\rightarrow \infty^+)(√(x^2+10x+5)+x)=\infty

LHL=RHL=∞


L=\lim_(x\rightarrow \infty)(√(x^2+10x+5)+x)


L=√(\infty^2+10\infty+5)+\infty


L=\infty

Hence, b is correct.

User Nitred
by
5.0k points
5 votes

Answer:

b.∞

Explanation:

Given:
\lim_(n \to \infty) √(x^2 + 10x + 5)  + x

This can be written as

=
\lim_(n \to \infty) √(x^2+10x + 5)  +  \lim_(n \to \infty) x

when applying the limit x -->∞, we get


\lim_(n \to \infty) √(x^2 +10x + 5) =

and


\lim_(n \to \infty) x = = ∞

Therefore, we get

= ∞ + ∞

= ∞ [Since ∞ itself a largest number so there is no 2∞]

Answer: b.∞

Hope this will helpful.

Thank you.

User Jeremie Pelletier
by
5.2k points