Answer:
b is correct.
![L=\infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/vnq3hkcoapk6fsrh4f0pizoqbx2zv5ed2g.png)
Explanation:
We are given a limit
![L=\lim_(x\rightarrow \infty)(√(x^2+10x+5)+x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/bxi6l5pqf8p1nz3yju3jok35tepjiqjd4v.png)
Using calculator to find the value of limit.
First we check the limit exist or not.
We have to check left and right hand limit.
For Left hand limit, LHL
![L=\lim_(x\rightarrow \infty^-)(√(x^2+10x+5)+x)=\infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/xuaumaltzg5q4gbebt01fq9s42f7s3e610.png)
For Right hand limit, RHL
![L=\lim_(x\rightarrow \infty^+)(√(x^2+10x+5)+x)=\infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/l1nzu8c4wsc05ilz5yjqzyxu8003h7nm0o.png)
LHL=RHL=∞
![L=\lim_(x\rightarrow \infty)(√(x^2+10x+5)+x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/bxi6l5pqf8p1nz3yju3jok35tepjiqjd4v.png)
![L=√(\infty^2+10\infty+5)+\infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/blwxs6620f69d5q3w52erb8jww4df4ojpa.png)
![L=\infty](https://img.qammunity.org/2020/formulas/mathematics/high-school/vnq3hkcoapk6fsrh4f0pizoqbx2zv5ed2g.png)
Hence, b is correct.