Answer with explanation:
If, A complex number, Z=a + i b
then, Z can be written as,=|r| (Cos A + i Sin A), where |r|=Modulus of Complex number which is equal to
![|r|=√(a^2+b^2)\\\\A=\ Tan^(-1)((b)/(a))\\\\a=r \ Cos A\\\\b=r \ Sin A\\\\Z=|r|e^(iA)](https://img.qammunity.org/2020/formulas/mathematics/high-school/9e5jv5ggi7kpyawu6rvuv9n4idd882gnc9.png)
The expression which is equivalent to √2[Cos 45° +i Sin 45°] is,
![\Rightarrow √(2)( \ Cos45^(\circ) + i\ Sin 45^(\circ))\\\\\Rightarrow √(2)((1)/(√(2)) +i(1)/(√(2)) )\\\\\Rightarrow √(2)*(1+i)/(√(2))\\\\=1+ i](https://img.qammunity.org/2020/formulas/mathematics/high-school/okkojhavu6d1z535t7ma0tnoav44ijz1xb.png)
And , the expression which is equivalent to,√2[Cos 315° +i Sin 315°] is
.
![\Rightarrow √(2)( \ Cos315^(\circ) + i\ Sin 315^(\circ))\\\\\Rightarrow √(2)( \ Cos45^(\circ) - i\ Sin 45^(\circ))\\\\\Rightarrow √(2)((1)/(√(2)) -i(1)/(√(2)) )\\\\\Rightarrow √(2)*(1-i)/(√(2))\\\\=1- i](https://img.qammunity.org/2020/formulas/mathematics/high-school/y5d8s9lfj63zx6cwgywjv3ah7itdk27xms.png)
→ Cos (360°-45°)=Cos 45°
→Sin (360° -45°)= -Sin 45°