187k views
25 votes
What is the solution to this equation?
-1/5(x+1 1/4)=-2 1/2

What is the solution to this equation? -1/5(x+1 1/4)=-2 1/2-example-1
User Jann
by
8.0k points

2 Answers

10 votes

Answer:


\sf c)\ x=10(3)/(4)

Explanation:

Given equation:


\sf -(1)/(5)\left(x+1(3)/(4)\right)=-2(1)/(2)

Step 1: Convert the mixed numbers into improper fractions.


\sf -(1)/(5)\left(x+(4*1+3)/(4)\right)=-(2*2+1)/(2)\implies -(1)/(5)\left(x+(7)/(4)\right)=-(5)/(2)

Step 2: Distribute -⅕ through the parentheses.


\sf-(1)/(5)(x)+-(1)/(5)\left((7)/(4)\right)=-(5)/(2)\\\\\implies -(1)/(5)x-(7)/(20)=-(5)/(2)

Step 3: Rewrite the equation with a common denominator of 20.


\sf -(1*4)/(5*4)x-(7)/(20)=-(5*10)/(2*10)\\\\\implies -(4)/(20)x-(7)/(20)=-(50)/(20)

Step 4: Multiply both sides by 20.


\sf 20\left(-(4)/(20)x\right)-20\left((7)/(20)\right)=20\left(-(50)/(20)\right)\\\\\implies -4x-7=-50

Step 5: Add 7 to both sides.


\sf -4x-7+7=-50+7\\\\\implies -4x=-43

Step 6: Divide both sides by -4.


\sf (-4x)/(-4)=(-43)/(-4)\\\\\implies x=(43)/(4)


Step 7: Convert the answer back into a mixed number.


\sf x=(43)/(4)\implies x=(40+3)/(4)\implies x=10(3)/(4)

User GusDeCooL
by
8.4k points
6 votes


\large\displaystyle\text{$\begin{gathered}\sf -(1)/(5)\left(x+1(3)/(4)\right)=-2(1)/(2) \end{gathered}$}

Multiply both sides of the equation by 20, the lowest common denominator of 5,4,2.


\large\displaystyle\text{$\begin{gathered}\sf \bf{-4\left(x+(4+3)/(4)\right)=-10(2*2+1) } \end{gathered}$}

Add 4 and 3 to get 7.


\large\displaystyle\text{$\begin{gathered}\sf \bf{-4\left(x+(7)/(4)\right)=-10(2*2+1) } \end{gathered}$}

Use the distributive property to multiply −4 times x 4/7.


\large\displaystyle\text{$\begin{gathered}\sf \bf{-4x-4*\left((7)/(4)\right)=-10(2*2+1) } \end{gathered}$}

Multiply −4 by 4/7.


\large\displaystyle\text{$\begin{gathered}\sf \bf{-4x-7=10(2*2+1) \ \ \to \ \ [Multiply \ 2*2] } \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf \bf{-4x-7=10(4+1) \ \ \to \ \ [Add] } \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf \bf{-4x-7=10*5 \ \ \to \ \ [Multiply] } \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf \bf{-4x-7=-50 } \end{gathered}$}

Add 7 to both sides.


\large\displaystyle\text{$\begin{gathered}\sf \bf{-4x=-50+7 \ \ \to \ \ [Add] } \end{gathered}$}


\large\displaystyle\text{$\begin{gathered}\sf \bf{-4x=-43 } \end{gathered}$}

Divide both sides by −4.


\large\displaystyle\text{$\begin{gathered}\sf \bf{x=(-43)/(-4) } \end{gathered}$}

The fraction
\bf{(-43)/(-4)} can be simplified to
\bf{(43)/(4)} by removing the negative sign from the numerator and denominator.


\large\displaystyle\text{$\begin{gathered}\sf \bf{x=(43)/(4) } \end{gathered}$}

simplify


\large\displaystyle\text{$\begin{gathered}\sf \bf{x=10(3)/(4) \ \ \to \ \ \ Answer } \end{gathered}$}

{ Pisces04 }

User Wobblycogs
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories