89.9k views
3 votes
Quadratic

3p^2−7p−1=0

Quadratic 3p^2−7p−1=0-example-1

2 Answers

6 votes

Answer:

x = 7 + √61 ÷ 6

Explanation:

3p² - 7p - 1 = 0 is a given equation

3p² - 7p - 1 = 0

Here,

a = 3

b = - 7

c = - 1

Now, Discriminant

D = b² - 4ac

= (- 7)² - 4 (3)(- 1)

= 49 + 12

D = 61 > 0

So, Quadratic Equation

ax² + bx + c = 0

x = - b ± √b² - 4ac ÷ 2a

x = - (- 7) ± √(- 7)² - 4 (3)(- 1) ÷ 2(3)

x = 7 ± √61 ÷ 6

x = 7 ± √61 ÷ 6

x = 7 + √61 ÷ 6 or x = 7 - √61 ÷ 6

Not real Value

Thus, The real value of x is 7 + √61 ÷ 6

-TheUnknownScientist

User Chris Arnold
by
9.4k points
3 votes

Answer:


x=(7\pm√(61) )/(6)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula:
    x=(-b\pm√(b^2-4ac) )/(2a)

Explanation:

Step 1: Define

3p² - 7p - 1 = 0

Step 2: Identify Variables

a = 3

b = -7

c = -1

Step 3: Find roots

  1. Substitute [Quad Formula]:
    x=(7\pm√((-7)^2-4(3)(-1)) )/(2(3))
  2. Evaluate Exponents:
    x=(7\pm√(49-4(3)(-1)) )/(2(3))
  3. Multiply:
    x=(7\pm√(49+12) )/(6)
  4. Add:
    x=(7\pm√(61) )/(6)
User Cvraman
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories