89.9k views
3 votes
Quadratic

3p^2−7p−1=0

Quadratic 3p^2−7p−1=0-example-1

2 Answers

6 votes

Answer:

x = 7 + √61 ÷ 6

Explanation:

3p² - 7p - 1 = 0 is a given equation

3p² - 7p - 1 = 0

Here,

a = 3

b = - 7

c = - 1

Now, Discriminant

D = b² - 4ac

= (- 7)² - 4 (3)(- 1)

= 49 + 12

D = 61 > 0

So, Quadratic Equation

ax² + bx + c = 0

x = - b ± √b² - 4ac ÷ 2a

x = - (- 7) ± √(- 7)² - 4 (3)(- 1) ÷ 2(3)

x = 7 ± √61 ÷ 6

x = 7 ± √61 ÷ 6

x = 7 + √61 ÷ 6 or x = 7 - √61 ÷ 6

Not real Value

Thus, The real value of x is 7 + √61 ÷ 6

-TheUnknownScientist

User Chris Arnold
by
5.8k points
3 votes

Answer:


x=(7\pm√(61) )/(6)

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula:
    x=(-b\pm√(b^2-4ac) )/(2a)

Explanation:

Step 1: Define

3p² - 7p - 1 = 0

Step 2: Identify Variables

a = 3

b = -7

c = -1

Step 3: Find roots

  1. Substitute [Quad Formula]:
    x=(7\pm√((-7)^2-4(3)(-1)) )/(2(3))
  2. Evaluate Exponents:
    x=(7\pm√(49-4(3)(-1)) )/(2(3))
  3. Multiply:
    x=(7\pm√(49+12) )/(6)
  4. Add:
    x=(7\pm√(61) )/(6)
User Cvraman
by
5.0k points