251,226 views
4 votes
4 votes
Helpz


\quad \sf {x}^(2) + 4 = 0

find value of x ​

User Jerald
by
2.8k points

2 Answers

9 votes
9 votes

Solution :

Given,

  • x² + 4 = 0

Aim :

  • To find value of x.

Inorder to calculate the value of x we would transpose the 4 which is in L.H.S. to R.H.S. (Remember that sign would be changed in negative).

>> x² = -4

>> √x² = √-4

>> x = ±2

Therefore,

  • Value of x is 2 and -2.
User Adaromas
by
2.9k points
21 votes
21 votes

-------------------------------------------------------------------------------------------------------------

Answer:
\textsf{2i and -2i}

-------------------------------------------------------------------------------------------------------------

Given:
\textsf{x}^2\textsf{ + 4 = 0}

Find:
\textsf{The value of x}

Solution: In order to find the value of x we must isolate x by itself and it will produce the result. In this case we need to subtract 4 from both sides and square root both sides in order to isolate x.

Subtract 4 from both sides


  • \textsf{x}^2\textsf{ + 4 - 4 = 0 - 4}

  • \textsf{x}^2\textsf{ = 0 - 4}

  • \textsf{x}^2\textsf{ = - 4}

Square root both sides


  • \sqrt{\textsf{x}^2}\textsf{ = }\sqrt{\textsf{- 4}}

  • \textsf{x}\textsf{ = }\sqrt{\textsf{- 4}}

  • \textsf{x}\textsf{ = }\sqrt{\textsf{ 2}^2\textsf{ * (i)}^2}}

  • \textsf{x}\textsf{ = }\pm\textsf{2i}

After completing all of the step we are able to determine that x is equal to both 2i and -2i.

User Jtlowe
by
2.9k points