Answer:
The first term of the sequence is 512 or -512
Explanation:
Geometric Progression
The general term n of a geometric progression of first term a1 and common ratio r is:
![a_n =a_1\cdot r^(n-1)](https://img.qammunity.org/2021/formulas/mathematics/college/apx8n03o5f6256ed3uk2h7s2mba9n26j1b.png)
We are given:
![a_4=8](https://img.qammunity.org/2021/formulas/mathematics/college/nfoa9baphr6s60dffg3c4zbth6g8tqbguu.png)
![\displaystyle a_6=(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/g9lyxksslu505a4mv3031swuamnhfftn33.png)
Applying the equation for n=4:
![a_4 =a_1\cdot r^(4-1)](https://img.qammunity.org/2021/formulas/mathematics/college/je7hvgb04ajpfam3tkru5s4i45qkyf2zt0.png)
![a_4 =a_1\cdot r^(3)](https://img.qammunity.org/2021/formulas/mathematics/college/hwg224wp5nmltj6eecijgdu2ni62ctqfq3.png)
We have:
![a_1\cdot r^(3)=8\qquad\qquad[1]](https://img.qammunity.org/2021/formulas/mathematics/college/81izroya9zt79b1w9r9hhyah3u9oeztbbs.png)
Applying the equation for n=6:
![a_6 =a_1\cdot r^(6-1)](https://img.qammunity.org/2021/formulas/mathematics/college/a062kgnb02o0s5u43xqb9cbn82h0m48rk8.png)
![a_6 =a_1\cdot r^(5)](https://img.qammunity.org/2021/formulas/mathematics/college/ic5j5v1hqevpa7cjg0kics4par3vt0fult.png)
We have:
![\displaystyle a_1\cdot r^(5)=(1)/(2) \qquad\qquad[2]](https://img.qammunity.org/2021/formulas/mathematics/college/7gvea0b4hhwka4mnyzkywrt750eko37fys.png)
Dividing [2] by [1]:
![\displaystyle (r^(5))/(r^(3))=((1)/(2))/(8)](https://img.qammunity.org/2021/formulas/mathematics/college/w5hdzxsberr4d2id9cyoohrxnwvm8t1n0q.png)
Operating:
![\displaystyle r^(2)=(1)/(16)](https://img.qammunity.org/2021/formulas/mathematics/college/b7vmz6y8jz1owrilu84qwkmhc2tckpqbre.png)
Taking the square root:
![\displaystyle r=\sqrt{(1)/(16)}=\pm (1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/s7dz1d2xwibyesehyal2sg8o83003g1z0r.png)
There are two possible solutions:
![\displaystyle r=(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/4zikhzn9e9viqwtos9ywbrrsb6w7kccrj0.png)
![\displaystyle r=-(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/p7xzy8dhqq90uli4ewaa2xgsrx85srv5bg.png)
From [1]:
![\displaystyle a_1 =(8)/(r^(3))](https://img.qammunity.org/2021/formulas/mathematics/college/3nmgz7pxjmt1tpqej5mnv82oyczigwdmhi.png)
This gives also two possibles solutions for a1:
![\displaystyle a_1 =(8)/(\left((1)/(4)\right)^(3)) =512](https://img.qammunity.org/2021/formulas/mathematics/college/ntfdezke92r6xf9zewbz2s3ax2kzdugv6p.png)
![\displaystyle a_1 =(8)/(\left(-(1)/(4)\right)^(3)) =-512](https://img.qammunity.org/2021/formulas/mathematics/college/hpbahd61eogt0c973az56oaijw7b2zeceb.png)
Thus, the first term of the sequence is 512 or -512