150k views
5 votes
Which is the inverse of the function a(d)=5d-3? And use the definition of inverse functions to prove a(d) and a-1(d) are inverse functions

1 Answer

7 votes

Answer:


a'(d) = (d)/(5) + (3)/(5)


a(a'(d)) = a'(a(d)) = d

Explanation:

Given


a(d) = 5d - 3

Solving (a): Write as inverse function


a(d) = 5d - 3

Represent a(d) as y


y = 5d - 3

Swap positions of d and y


d = 5y - 3

Make y the subject


5y = d + 3


y = (d)/(5) + (3)/(5)

Replace y with a'(d)


a'(d) = (d)/(5) + (3)/(5)

Prove that a(d) and a'(d) are inverse functions


a'(d) = (d)/(5) + (3)/(5) and
a(d) = 5d - 3

To do this, we prove that:


a(a'(d)) = a'(a(d)) = d

Solving for
a(a'(d))


a(a'(d)) = a((d)/(5) + (3)/(5))

Substitute
(d)/(5) + (3)/(5) for d in
a(d) = 5d - 3


a(a'(d)) = 5((d)/(5) + (3)/(5)) - 3


a(a'(d)) = (5d)/(5) + (15)/(5) - 3


a(a'(d)) = d + 3 - 3


a(a'(d)) = d

Solving for:
a'(a(d))


a'(a(d)) = a'(5d - 3)

Substitute 5d - 3 for d in
a'(d) = (d)/(5) + (3)/(5)


a'(a(d)) = (5d - 3)/(5) + (3)/(5)

Add fractions


a'(a(d)) = (5d - 3+3)/(5)


a'(a(d)) = (5d)/(5)


a'(a(d)) = d

Hence:


a(a'(d)) = a'(a(d)) = d