Answer:
![a'(d) = (d)/(5) + (3)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ynammtvjabf2v5h7i53hfcy6sv453axani.png)
![a(a'(d)) = a'(a(d)) = d](https://img.qammunity.org/2021/formulas/mathematics/high-school/ver7dn9fb1x08mu4jzn5ohviovqnqmv18x.png)
Explanation:
Given
![a(d) = 5d - 3](https://img.qammunity.org/2021/formulas/mathematics/high-school/jb593s9ej9as9smxzo3oqfruw9bu2nephe.png)
Solving (a): Write as inverse function
![a(d) = 5d - 3](https://img.qammunity.org/2021/formulas/mathematics/high-school/jb593s9ej9as9smxzo3oqfruw9bu2nephe.png)
Represent a(d) as y
![y = 5d - 3](https://img.qammunity.org/2021/formulas/mathematics/high-school/zplx5lnc8ohuvl9s2shymsro6sxu3wxi0k.png)
Swap positions of d and y
![d = 5y - 3](https://img.qammunity.org/2021/formulas/mathematics/high-school/cb6xdphv4gdhaxdo4vrlki2y0vr731mbpn.png)
Make y the subject
![5y = d + 3](https://img.qammunity.org/2021/formulas/mathematics/high-school/szdr4ttsv6leeq0kmaxrvjggo9wczoala8.png)
![y = (d)/(5) + (3)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ocfvbg0kyictxg90ox7p0qbrr5k41txeg8.png)
Replace y with a'(d)
![a'(d) = (d)/(5) + (3)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ynammtvjabf2v5h7i53hfcy6sv453axani.png)
Prove that a(d) and a'(d) are inverse functions
and
![a(d) = 5d - 3](https://img.qammunity.org/2021/formulas/mathematics/high-school/jb593s9ej9as9smxzo3oqfruw9bu2nephe.png)
To do this, we prove that:
![a(a'(d)) = a'(a(d)) = d](https://img.qammunity.org/2021/formulas/mathematics/high-school/ver7dn9fb1x08mu4jzn5ohviovqnqmv18x.png)
Solving for
![a(a'(d))](https://img.qammunity.org/2021/formulas/mathematics/high-school/a2vzwd65k4wxl7g0qfohz2a18qgex31ddd.png)
![a(a'(d)) = a((d)/(5) + (3)/(5))](https://img.qammunity.org/2021/formulas/mathematics/high-school/cwd552w0hrhi1t90jqzp6807krz2o1lg4g.png)
Substitute
for d in
![a(d) = 5d - 3](https://img.qammunity.org/2021/formulas/mathematics/high-school/jb593s9ej9as9smxzo3oqfruw9bu2nephe.png)
![a(a'(d)) = 5((d)/(5) + (3)/(5)) - 3](https://img.qammunity.org/2021/formulas/mathematics/high-school/4jnjqchec10u2mjyy64vow8l1sfeetde01.png)
![a(a'(d)) = (5d)/(5) + (15)/(5) - 3](https://img.qammunity.org/2021/formulas/mathematics/high-school/fqwk33gj83dref0vwu54a5bpq4nfz9p0hy.png)
![a(a'(d)) = d + 3 - 3](https://img.qammunity.org/2021/formulas/mathematics/high-school/ygd4or568v93nw5ola6dnjibsha6y6yhde.png)
![a(a'(d)) = d](https://img.qammunity.org/2021/formulas/mathematics/high-school/3b6rcysiio0fhok3f5jfgptgkncpr73meu.png)
Solving for:
![a'(a(d))](https://img.qammunity.org/2021/formulas/mathematics/high-school/c0ddfkqw4sjo2ubbw6evu8z111hcmav33l.png)
![a'(a(d)) = a'(5d - 3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/v0id06ygf1myb9x6ej1zn8xffv6glmftum.png)
Substitute 5d - 3 for d in
![a'(d) = (d)/(5) + (3)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ynammtvjabf2v5h7i53hfcy6sv453axani.png)
![a'(a(d)) = (5d - 3)/(5) + (3)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/n2072oa3dqhztxxlz5lamvls8pa4laf140.png)
Add fractions
![a'(a(d)) = (5d - 3+3)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/fvo0h7u53vd4fuqog11mnigvnd0kok1q95.png)
![a'(a(d)) = (5d)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zqxxa1h89ij3rvtdtazrpngx14h9jmk4oz.png)
![a'(a(d)) = d](https://img.qammunity.org/2021/formulas/mathematics/high-school/33kxjlhxvezhqbvan1azg2rvootx935h2b.png)
Hence:
![a(a'(d)) = a'(a(d)) = d](https://img.qammunity.org/2021/formulas/mathematics/high-school/ver7dn9fb1x08mu4jzn5ohviovqnqmv18x.png)