205k views
9 votes
Given that f(x)= x^3/4 +6
a) Find f(4)
b) Find f^-1(x)
c) Find f^-1(8)

Given that f(x)= x^3/4 +6 a) Find f(4) b) Find f^-1(x) c) Find f^-1(8)-example-1
User Bstampe
by
7.6k points

2 Answers

11 votes

a)


f(4)=(4^3)/(4)+6=4^2+6=16+6=22

b)


\begin{aligned}\\&y=(x^3)/(4)+6\\&4y=x^3+24\\&x^3=4y-24\\&x=\sqrt[3]{4y-24}\\&f^(-1)(x)=\sqrt[3]{4x-24}\end

c)


f^(-1)(8)=\sqrt[3]{4\cdot8-24}=\sqrt[3]{8}=2

User Abhijith Konnayil
by
7.6k points
1 vote

Answer:


\displaystyle \large{f(4)=22}\\\\\displaystyle \large{f^(-1)(x)=\sqrt[3]{4x-24}}\\\\\displaystyle \large{f^(-1)(8) = 2}

Explanation:

In this problem, we are given the linear function:


\displaystyle \large{f(x)=(x^3)/(4)+6}

( a ) Find f(4)

Simply substitute x = 4 in the function f(x).


\displaystyle \large{f(4)=(4^3)/(4)+6}\\\\\displaystyle \large{f(4)=4^2+6}\\\\\displaystyle \large{f(4)=16+6}\\\\\displaystyle \large{f(4)=22}

( b ) Find the inverse

To find
\displaystyle \large{f^(-1)(x)}, solve for x-term then swap x-term and y-term.


\displaystyle \large{4f(x)=x^3+24}\\\\\displaystyle \large{4f(x)-24=x^3}\\\\\displaystyle \large{\sqrt[3]{4f(x)-24}=\sqrt[3]{x^3}}\\\\\displaystyle \large{x=\sqrt[3]{4f(x)-24}}

Swap f(x) and x.


\displaystyle \large{f^(-1)(x)=\sqrt[3]{4x-24}}

( c ) Find inverse f(8)

Substitute x = 8 in inverse function.


\displaystyle \large{f^(-1)(8) = \sqrt[3]{4(8)-24}}\\\\\displaystyle \large{f^(-1)(8) = \sqrt[3]{32-24}}\\\\\displaystyle \large{f^(-1)(8) = \sqrt[3]{8}}\\\\\displaystyle \large{f^(-1)(8) = 2}

Please let me know if you have any doubts!

User Grandchild
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.