120k views
17 votes
Use fundamental theorem of calculus to find derivative of the function LOOK AT PHOTO

Use fundamental theorem of calculus to find derivative of the function LOOK AT PHOTO-example-1
User Umpljazz
by
4.4k points

1 Answer

8 votes

Let c > 0. Then split the integral at t = c to write


f(x) = \displaystyle \int_(\ln(x))^(\frac1x) (t + \sin(t)) \, dt = \int_c^(\frac1x) (t + \sin(t)) \, dt - \int_c^(\ln(x)) (t + \sin(t)) \, dt

By the FTC, the derivative is


\displaystyle (df)/(dx) = \left(\frac1x + \sin\left(\frac1x\right)\right) (d)/(dx)\left[\frac1x\right] - (\ln(x) + \sin(\ln(x))) (d)/(dx)\left[\ln(x)\right] \\\\ = -\frac1{x^2} \left(\frac1x + \sin\left(\frac1x\right)\right) - \frac1x (\ln(x) + \sin(\ln(x))) \\\\ = -\frac1{x^3} - (\sin\left(\frac1x\right))/(x^2) - \frac{\ln(x)}x - \frac{\sin(\ln(x))}x \\\\ = -(1 + x\sin\left(\frac1x\right) + x^2\ln(x) + x^2 \sin(\ln(x)))/(x^3)

User Wade Mueller
by
4.8k points