23.8k views
11 votes
Integrate the question below


Integrate the question below ​-example-1

1 Answer

6 votes

It looks like the integral is


\displaystyle \int_0^1 (2x - 8x^2)/(1+4x) \, dx

Polynomial division yields


(2x-8x^2)/(1+4x) = -2x + 1 - \frac1{1+4x}

Now split up the integral as


\displaystyle \int_0^1 \left(-2x + 1 - \frac1{1+4x}\right) \, dx = \int_0^1 (1-2x) \, dx - \int_0^1 (dx)/(1+4x)

In the second integral, substitute
u=1+4x and
du=4\,dx. Then
x=0 \implies u=1 and
x=1 \implies u=5, so


\displaystyle \int_0^1 (dx)/(1+4x) = \frac14 \int_1^5 \frac{du}u

and by the fundamental theorem of calculus, the integral we want evaluates to


\displaystyle \int_0^1 \left(-2x + 1 - \frac1{1+4x}\right) \, dx = \int_0^1 (1-2x) \, dx - \frac14 \int_1^5 \frac{du}u \\\\ = (x - x^2)\bigg|_(x=0)^(x=1) - \frac14 \ln|u| \bigg|_(u=1)^(u=5) \\\\ = \bigg((1 - 1^2) - (0 - 0^2)\bigg) - \frac14 (\ln(5) - \ln(1)) = \boxed{-\frac{\ln(5)}4}

User Abijith Mg
by
3.6k points