44.9k views
1 vote
Assume y≠60 which expression is equivalent to (7sqrtx2)/(5sqrty3)

Assume y≠60 which expression is equivalent to (7sqrtx2)/(5sqrty3)-example-1
User PlexQ
by
8.6k points

1 Answer

3 votes

Answer:

The equivalent will be:


\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}=\left(\:x^{(2)/(7)}\right)\left(y^{-(3)/(5)}\right)

Therefore, option 'a' is true.

Explanation:

Given the expression


\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}

Let us solve the expression step by step to get the equivalent


\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}

as


\sqrt[7]{x^2}=\left(x^2\right)^{(1)/(7)}
\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a}=a^{(1)/(n)}


\mathrm{Apply\:exponent\:rule:\:}\left(a^b\right)^c=a^(bc),\:\quad \mathrm{\:assuming\:}a\ge 0


=x^{2\cdot (1)/(7)}


=x^{(2)/(7)}

also


\sqrt[5]{y^3}=\left(y^3\right)^{(1)/(5)}
\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a}=a^{(1)/(n)}


\mathrm{Apply\:exponent\:rule:\:}\left(a^b\right)^c=a^(bc),\:\quad \mathrm{\:assuming\:}a\ge 0


=y^{3\cdot (1)/(5)}


=y^{(3)/(5)}

so the expression becomes


\frac{x^{(2)/(7)}}{y^{(3)/(5)}}


\mathrm{Apply\:exponent\:rule}:\quad \:a^(-b)=(1)/(a^b)


=\left(\:x^{(2)/(7)}\right)\left(y^{-(3)/(5)}\right)
\:\frac{1}{y^{(3)/(5)}}=y^{-(3)/(5)}

Thus, the equivalent will be:


\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}=\left(\:x^{(2)/(7)}\right)\left(y^{-(3)/(5)}\right)

Therefore, option 'a' is true.

User Cbilliau
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories