Answer:
The equivalent will be:
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}=\left(\:x^{(2)/(7)}\right)\left(y^{-(3)/(5)}\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6a87rl0t1wrr8uzxy7u4bwg6ccvi8vq5ki.png)
Therefore, option 'a' is true.
Explanation:
Given the expression
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/dj72ba9ccqglkgtb0c8t5enkbdwyxi94yc.png)
Let us solve the expression step by step to get the equivalent
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/dj72ba9ccqglkgtb0c8t5enkbdwyxi94yc.png)
as
∵
![\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a}=a^{(1)/(n)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/u9jioc8r7jc4x6939q2vaxxxup1pf8r1ej.png)
![\mathrm{Apply\:exponent\:rule:\:}\left(a^b\right)^c=a^(bc),\:\quad \mathrm{\:assuming\:}a\ge 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/ipkyyykw4bkw6fe2h3nr0v1jy6njqsghps.png)
![=x^{2\cdot (1)/(7)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ocmq8jgejp09d1nj9ujjbee0178rdodaim.png)
![=x^{(2)/(7)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/pu2vibe09mghgc6q5z6bv094g55ug6o00r.png)
also
∵
![\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a}=a^{(1)/(n)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/u9jioc8r7jc4x6939q2vaxxxup1pf8r1ej.png)
![\mathrm{Apply\:exponent\:rule:\:}\left(a^b\right)^c=a^(bc),\:\quad \mathrm{\:assuming\:}a\ge 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/ipkyyykw4bkw6fe2h3nr0v1jy6njqsghps.png)
![=y^{3\cdot (1)/(5)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ncl4soqyxoto8y7d9ecq1e9dm9x54tjypr.png)
![=y^{(3)/(5)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/t391c8mvrdib9lo856pjnnvnvvin449zab.png)
so the expression becomes
![\frac{x^{(2)/(7)}}{y^{(3)/(5)}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/hmduwgbwsida5m5itayayz34m2dnyzun6z.png)
![\mathrm{Apply\:exponent\:rule}:\quad \:a^(-b)=(1)/(a^b)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f9e9msvy0dpv7beqtl96svcukvk2me5hpx.png)
∵
![\:\frac{1}{y^{(3)/(5)}}=y^{-(3)/(5)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/rqvswo74b3rnttobvepqyj2gdqdqizh69w.png)
Thus, the equivalent will be:
![\frac{\sqrt[7]{x^2}}{\sqrt[5]{y^3}}=\left(\:x^{(2)/(7)}\right)\left(y^{-(3)/(5)}\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/6a87rl0t1wrr8uzxy7u4bwg6ccvi8vq5ki.png)
Therefore, option 'a' is true.