96.5k views
5 votes
The sum of two numbers is 92. One eighth of the larger number plus one third of the smaller number is 19. Find the numbers.​

User Arezzo
by
7.6k points

1 Answer

2 votes

Answer:

The numbers 'x' and 'y' are:


x=56,\:y=36

Explanation:

Let 'x' and 'y' be the two numbers

As the sum of the two numbers is 92.

so


x+y = 92

Given that One-eighth of the larger number plus one-third of the smaller number is 19.

so


(1)/(8)x\:+\:(1)/(3)y=19

now solving both equations to determine the numbers 'x' and 'y'.


\begin{bmatrix}(1)/(8)x+(1)/(3)y=19\\ x+y=92\end{bmatrix}


\mathrm{Multiply\:}(1)/(8)x+(1)/(3)y=19\mathrm{\:by\:}8\:\mathrm{:}\:\quad \:x+(8)/(3)y=152


\begin{bmatrix}x+(8)/(3)y=152\\ x+y=92\end{bmatrix}


x+y=92


-


\underline{x+(8)/(3)y=152}


-(5)/(3)y=-60


\begin{bmatrix}x+(8)/(3)y=152\\ -(5)/(3)y=-60\end{bmatrix}

solve for y


-(5)/(3)y=-60


-5y=-180


\mathrm{Divide\:both\:sides\:by\:}-5


(-5y)/(-5)=(-180)/(-5)


y=36


\mathrm{For\:}x+(8)/(3)y=152\mathrm{\:plug\:in\:}y=36


x+(8)/(3)\cdot \:36=152


x=56

Thus, the numbers 'x' and 'y' are:


x=56,\:y=36

User Madrang
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories