Answer:
The range is:
{-4, 1, 2, 5, 8}
Explanation:
Given the function
![f(x)=3x+2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g4ulj2vxvne29k18n0l5revzepqgfzpmoi.png)
- We know that the domain of a function is the set of input or argument values for which the function is real and defined.
As the domain interval -2 ≤ x ≤ 2
i.e. the values in the domain = {-2, -1, 0, 1, 2}
- We also know that the range of a function is the set of values of the dependent variable for which a function is defined.
As the domain interval -2 ≤ x ≤ 2
Putting all the x-values in the domain interval in the function
so
putting x=-2 in the function
![f(x)=3x+2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g4ulj2vxvne29k18n0l5revzepqgfzpmoi.png)
![f(-2)=3(-2)+2=-6+2=-4](https://img.qammunity.org/2021/formulas/mathematics/high-school/uwu6zxz4llx2974ztnpgaidnrqs71dthm9.png)
putting x=-1 in the function
![f(x)=3x+2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g4ulj2vxvne29k18n0l5revzepqgfzpmoi.png)
![f(-1)=3(-1)+2=-3+2=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/y982j29ams7e6f3qt01q1w7jzdisw3cueu.png)
putting x=0 in the function
![f(x)=3x+2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g4ulj2vxvne29k18n0l5revzepqgfzpmoi.png)
![f(0)=3(0)+2=0+2=2](https://img.qammunity.org/2021/formulas/mathematics/high-school/hd6mnubx6mel58bl3knvk0xkzb2apf1sfr.png)
putting x=1 in the function
![f(x)=3x+2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g4ulj2vxvne29k18n0l5revzepqgfzpmoi.png)
![f(1)=3(1)+2=3+2=5](https://img.qammunity.org/2021/formulas/mathematics/high-school/b4tnehzqjujckniy1c786m83bqtot7p1be.png)
putting x=2 in the function
![f(x)=3x+2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g4ulj2vxvne29k18n0l5revzepqgfzpmoi.png)
![f(2)=3(2)+2=6+2=8](https://img.qammunity.org/2021/formulas/mathematics/high-school/n1kmz66eba6a47f8v46oocor5jsd5yd4jj.png)
Thus, when we put the domain values, the corresponding range values are:
x y
-2 -4
-1 1
0 2
1 5
2 8
Therefore, the range is:
{-4, 1, 2, 5, 8}