11.8k views
4 votes
If sinA 3/5 and cos B 5/13 , then find the value of sin (A+B)​

1 Answer

3 votes

Answer:


(63)/(65)

Explanation:

We have to find the value of sinB & cosA . So to find the value of sinB , let's use the identity


{ \sin }^(2) b + { \cos }^(2) b = 1

By using the identity above gives


{ \sin}^(2) b + ( { (5 )/(13) })^(2) = 1


= > { \sin}^(2) b = 1 - (25)/(169) = (144)/(169)


= > \sin(b) = \sqrt{ (144)/(169) } = (12)/(13)

Now to find the value of cosA , we'll use the same identity.


{( (3)/(5) })^(2) + { \cos}^(2) a = 1


= > { \cos }^(2) a = 1 - (9)/(25) = (16)/(25)


= > \cos(a) = \sqrt{ (16)/(25) } = (4)/(5)

Now we know that


\sin(a + b)=\sin(a)\cos(b)+\sin(b) \cos(a)

So value of sin(a+b) =


(3)/(5) * (5)/(13) + (12)/(13) * (4)/(5)


= (3)/(13) + (48)/(65)


= (63)/(65)

User Laokoon
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories