11.8k views
4 votes
If sinA 3/5 and cos B 5/13 , then find the value of sin (A+B)​

1 Answer

3 votes

Answer:


(63)/(65)

Explanation:

We have to find the value of sinB & cosA . So to find the value of sinB , let's use the identity


{ \sin }^(2) b + { \cos }^(2) b = 1

By using the identity above gives


{ \sin}^(2) b + ( { (5 )/(13) })^(2) = 1


= > { \sin}^(2) b = 1 - (25)/(169) = (144)/(169)


= > \sin(b) = \sqrt{ (144)/(169) } = (12)/(13)

Now to find the value of cosA , we'll use the same identity.


{( (3)/(5) })^(2) + { \cos}^(2) a = 1


= > { \cos }^(2) a = 1 - (9)/(25) = (16)/(25)


= > \cos(a) = \sqrt{ (16)/(25) } = (4)/(5)

Now we know that


\sin(a + b)=\sin(a)\cos(b)+\sin(b) \cos(a)

So value of sin(a+b) =


(3)/(5) * (5)/(13) + (12)/(13) * (4)/(5)


= (3)/(13) + (48)/(65)


= (63)/(65)

User Laokoon
by
3.7k points