Answer:
a.)
![x=12](https://img.qammunity.org/2021/formulas/mathematics/middle-school/kzh72we7ptn8hlgavxhsl5e208kjtiramm.png)
b.)
![A=50](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qz2meciuwd80i1j1ki3i0dq3bgr6yb87y5.png)
Explanation:
a.) Remember: the sum of all angles in a triangle will always be 180°.
Make an equation in which all given angles add up to 180:
∠1+∠2+∠3=180
![(3x+14)+(7x-4)+50=180](https://img.qammunity.org/2021/formulas/mathematics/high-school/iz3npfwom0bxb3zegj3imca9neqopi9a6a.png)
Solve the equation for the value of x. Remove the parentheses:
![3x+14+7x-4+50=180](https://img.qammunity.org/2021/formulas/mathematics/high-school/z50cz3ofa3ou9p1i5irg2wi8oxv0hulhi9.png)
Combine like terms:
![(3x+7x)+(14-4+50)=180\\\\10x+60=180](https://img.qammunity.org/2021/formulas/mathematics/high-school/t2lkdqz19xes6n64d5qob6iko8faxsstth.png)
Subtract 60 from both sides:
![10x+60-60=180-60\\\\10x=120](https://img.qammunity.org/2021/formulas/mathematics/high-school/e8q7v6avtdr9vnlwedo4x0x8m1d2i9j907.png)
Divide both sides by 10:
![(10x)/(10)=(120)/(10) \\\\x=12](https://img.qammunity.org/2021/formulas/mathematics/high-school/e2jzk0myu8g4fq07s5prt2b98tyg98a4pp.png)
The value of x is 12.
b.) Insert the value of x into the given value of ∠A:
![A=3x+14\\\\A=3(12)+14](https://img.qammunity.org/2021/formulas/mathematics/high-school/g29lqxl0oxs4ulkioxveiwyes31uxvlu8y.png)
Simplify multiplication:
![A=36+14](https://img.qammunity.org/2021/formulas/mathematics/high-school/qbrgarr9ivzgirno5z1x8qb7vyuro0cf3u.png)
Add:
![A=50](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qz2meciuwd80i1j1ki3i0dq3bgr6yb87y5.png)
∠A is 50°.
:Done
Check Your Work:
To make sure the given values are true, solve for ∠B:
![B=7(12)-4\\\\B=84-4\\\\B=80](https://img.qammunity.org/2021/formulas/mathematics/high-school/d42jldbf0rtxvd1jh6y89gifzd70nqnn47.png)
Now add all angle values to determine if they add up to 180°:
![50+50+80=180\\\\100+80=180\\\\180=180](https://img.qammunity.org/2021/formulas/mathematics/high-school/ak25fvahqoabvyfo6a7sydkr3gooeuc0j8.png)
Since 180 is equal to 180, the values are true.