3.4k views
0 votes
What is the solution of the linear-quadratic system of equations?

y=x' + 5x + 7
y = x +4

User Diego
by
7.9k points

1 Answer

2 votes

Answer:


\mathrm{Therefore,\:the\:final\:solutions\:for\:}y=x^2+5x+7,\:y=x+4\mathrm{\:are\:}


\begin{pmatrix}x=-1,\:&y=3\\ x=-3,\:&y=1\end{pmatrix}

Explanation:

Given the system of the equations


y=x^2\:+\:5x\:+\:7


y\:=\:x\:+4

steps to solve the system of the equations


\begin{bmatrix}y=x^2+5x+7\\ y=x+4\end{bmatrix}

subtract the equations


y=x^2+5x+7


-


\underline{y=x+4}


y-y=x^2+5x+7-\left(x+4\right)


0=x^2+4x+3

solving


0=x^2+4x+3


\left(x+1\right)\left(x+3\right)=0


x+1=0\quad \mathrm{or}\quad \:x+3=0


x=-1,\:x=-3


\mathrm{Plug\:the\:solutions\:}x=-1,\:x=-3\mathrm{\:into\:}y=x^2+5x+7

substitute
x=-1 into
y=x^2+5x+7


y=x^2+5x+7


y=\left(-1\right)^2-5\cdot \:1+7


y=1-5+7


y=3

Now substitute
x=-3 into
y=x^2+5x+7


y=x^2+5x+7


y=\left(-3\right)^2+5\left(-3\right)+7


y=3^2-15+7


y=3^2-8


y=9-8


y=1


\mathrm{Therefore,\:the\:final\:solutions\:for\:}y=x^2+5x+7,\:y=x+4\mathrm{\:are\:}


\begin{pmatrix}x=-1,\:&y=3\\ x=-3,\:&y=1\end{pmatrix}

User Ayushgp
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories