3.4k views
0 votes
What is the solution of the linear-quadratic system of equations?

y=x' + 5x + 7
y = x +4

User Diego
by
4.5k points

1 Answer

2 votes

Answer:


\mathrm{Therefore,\:the\:final\:solutions\:for\:}y=x^2+5x+7,\:y=x+4\mathrm{\:are\:}


\begin{pmatrix}x=-1,\:&y=3\\ x=-3,\:&y=1\end{pmatrix}

Explanation:

Given the system of the equations


y=x^2\:+\:5x\:+\:7


y\:=\:x\:+4

steps to solve the system of the equations


\begin{bmatrix}y=x^2+5x+7\\ y=x+4\end{bmatrix}

subtract the equations


y=x^2+5x+7


-


\underline{y=x+4}


y-y=x^2+5x+7-\left(x+4\right)


0=x^2+4x+3

solving


0=x^2+4x+3


\left(x+1\right)\left(x+3\right)=0


x+1=0\quad \mathrm{or}\quad \:x+3=0


x=-1,\:x=-3


\mathrm{Plug\:the\:solutions\:}x=-1,\:x=-3\mathrm{\:into\:}y=x^2+5x+7

substitute
x=-1 into
y=x^2+5x+7


y=x^2+5x+7


y=\left(-1\right)^2-5\cdot \:1+7


y=1-5+7


y=3

Now substitute
x=-3 into
y=x^2+5x+7


y=x^2+5x+7


y=\left(-3\right)^2+5\left(-3\right)+7


y=3^2-15+7


y=3^2-8


y=9-8


y=1


\mathrm{Therefore,\:the\:final\:solutions\:for\:}y=x^2+5x+7,\:y=x+4\mathrm{\:are\:}


\begin{pmatrix}x=-1,\:&y=3\\ x=-3,\:&y=1\end{pmatrix}

User Ayushgp
by
4.0k points