Answer:
i) length > 9 ft
breadth > 5 ft
height > 3 ft
ii) Area of floor > 45 ft²
Explanation:
Volume of a rectangular prism
![\textsf{V}=lbh](https://img.qammunity.org/2023/formulas/mathematics/high-school/9fuzh9d3s1wpddkbc0huzeulkz7cuajmko.png)
where:
- l is the length
- b is the breadth
- h is the height
Given:
Part (i)
To find expressions for the 3 dimensions of the tank, factor the expression for Volume.
Using the Factor Theorem, if V(x) = 0 then (a - p) is a factor:
![\implies \sf V(1)=2(1)^3+(1)^2-2(1)-1=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/myu83v0vvc5kzj5j3ccnvs7tuzdqunb2lf.png)
![\implies \sf V(-1)=2(-1)^3+(-1)^2-2(-1)-1=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/d8z9djoyxszsnkxs9rxd26iys2s4494a0m.png)
Therefore (a - 1) and (a + 1) are factors:
![\implies \sf 2a^3+a^2-2a-1=(a-1)(a+1)(2a+p)](https://img.qammunity.org/2023/formulas/mathematics/high-school/puqralpx2jysdg29g5aqft57h21kquma94.png)
(where p is a constant to be found)
To find the value of p, expand:
![\implies \sf 2a^3+a^2-2a-1=2a^3+pa^2-2a-1](https://img.qammunity.org/2023/formulas/mathematics/high-school/8bhgonl6scrjmjmavvwj500ene6ohtfjhj.png)
and compare coefficients:
![\implies \sf a^2=pa^2 \implies p=1](https://img.qammunity.org/2023/formulas/mathematics/high-school/lrmydo4cinpxe8ictzxmpst52tvkwur7lk.png)
Therefore:
![\implies \sf 2a^3+a^2-2a-1=(a-1)(a+1)(2a+1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/n2fr2w7q2cmekiox0vvej4apqm8u2lztfg.png)
If l > b and b > h then:
- length (l) = (2a + 1)
- breadth (b) = (a + 1)
- height (h) = (a - 1)
If a > 4 ft then:
- length > 9 ft
- breadth > 5 ft
- height > 3 ft
Part (ii)
The area of the floor can be found by multiplying the found expressions for breadth and length:
![\begin{aligned}\implies \sf Area\:of\:floor & =(a+1)(2a+1)\\& = 2a^2+3a+1\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5oy6c60kyh78iz7wz5ypp4xwli2nuc1y9d.png)
If a > 4 ft then Area of floor > 45 ft²